Ataollah Kavian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8027165/publications.pdf

Version: 2024-02-01

43 1,767 23 41 papers citations h-index g-index

44 44 1786
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environmental Earth Sciences, 2017, 76, 1.	2.7	211
2	Effects of rainfall patterns on runoff and soil erosion in field plots. International Soil and Water Conservation Research, 2015, 3, 273-281.	6.5	176
3	Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping. Sensors, 2018, 18, 3777.	3.8	146
4	Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. Catena, 2019, 178, 172-188.	5.0	107
5	Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran. Environmental Earth Sciences, 2017, 76, 1.	2.7	102
6	Landslide susceptibility mapping based on frequency ratio and logistic regression models. Arabian Journal of Geosciences, 2013, 6, 2557-2569.	1.3	88
7	Spatial prediction of soil erosion susceptibility using a fuzzy analytical network process: Application of the fuzzy decision making trial and evaluation laboratory approach. Land Degradation and Development, 2018, 29, 3092-3103.	3.9	76
8	GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomatics, Natural Hazards and Risk, 2011, 2, 33-50.	4.3	72
9	Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environmental Earth Sciences, 2017, 76, 1.	2.7	66
10	Evaluation of multi-hazard map produced using MaxEnt machine learning technique. Scientific Reports, 2021, 11, 6496.	3.3	63
11	Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques. Arabian Journal of Geosciences, 2011, 4, 401-411.	1.3	52
12	Deforestation effects on soil properties, runoff and erosion in northern Iran. Arabian Journal of Geosciences, 2014, 7, 1941-1950.	1.3	43
13	Impact of different parts of skid trails on runoff and soil erosion in the Hyrcanian forest (northern) Tj ETQq $1\ 1\ 0.7$	784314 rg 5.1	BT/Overlock
14	Tillage Versus No-Tillage. Soil Properties and Hydrology in an Organic Persimmon Farm in Eastern Iberian Peninsula. Water (Switzerland), 2020, 12, 1539.	2.7	39
15	Simulating the effects of land use changes on soil erosion using RUSLE model. Geocarto International, 2017, 32, 97-111.	3.5	38
16	Assessment of the Spatiotemporal Effects of Land Use Changes on Runoff and Nitrate Loads in the Talar River. Water (Switzerland), 2018, 10, 445.	2.7	29
17	Flow discharge simulation based on land use change predictions. Environmental Earth Sciences, 2017, 76, 1.	2.7	27
18	Soil and water conservation using biochar and various soil moisture in laboratory conditions. Catena, 2019, 182, 104151.	5.0	27

#	Article	IF	CITATIONS
19	Effects of Land-Use Change on Soil Organic Carbon and Nitrogen. Communications in Soil Science and Plant Analysis, 2013, 44, 339-346.	1.4	26
20	Watershed prioritization in order to implement soil and water conservation practices. Environmental Earth Sciences, 2016, 75, 1.	2.7	26
21	Simulated raindrop's characteristic measurements. A new approach of image processing tested under laboratory rainfall simulation. Catena, 2018, 167, 190-197.	5.0	26
22	Effectiveness of vegetative buffer strips at reducing runoff, soil erosion, and nitrate transport during degraded hillslope restoration in northern Iran. Land Degradation and Development, 2018, 29, 3194-3203.	3.9	25
23	Gully Erosion Susceptibility Mapping Using Multivariate Adaptive Regression Splinesâ€"Replications and Sample Size Scenarios. Water (Switzerland), 2019, 11, 2319.	2.7	25
24	The increase of rainfall erosivity and initial soil erosion processes due to rainfall acidification. Hydrological Processes, 2019, 33, 261-270.	2.6	24
25	Prediction of the soil erosion in a forest and sediment yield from road network through GIS and SEDMODL. International Journal of Sediment Research, 2014, 29, 118-125.	3.5	23
26	Landslide susceptibility analysis with a bivariate approach and GIS in Northern Iran. Arabian Journal of Geosciences, 2009, 2, 95-101.	1.3	22
27	The efficiency of vegetative buffer strips in runoff quality and quantity control. International Journal of Environmental Science and Technology, 2018, 15, 811-820.	3.5	21
28	Impact of Wheat Residue on Soil Erosion Processes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 46, 553-562.	1.1	20
29	Variability of Soil Erosion Intensity Due to Vegetation Cover Changes: Case Study of Orahovacka Rijeka, Montenegro. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 47, 237-248.	1.1	17
30	Assessment of soil erodibility and aggregate stability for different parts of a forest road. Journal of Forestry Research, 2014, 25, 193-200.	3.6	16
31	Assessing the hydrological effects of land-use changes on a catchment using the Markov chain and WetSpa models. Hydrological Sciences Journal, 2020, 65, 2604-2615.	2.6	13
32	Calibration of the SARI portable rainfall simulator for field and laboratory experiments. Hydrological Sciences Journal, 2019, 64, 350-360.	2.6	12
33	The Use of Straw Mulches to Mitigate Soil Erosion under Different Antecedent Soil Moistures. Water (Switzerland), 2020, 12, 2518.	2.7	10
34	Runoff and sediment concentration of different parts of a road in Hyrcanian forests. Forest Science and Practice, 2013, 15, 144-151.	0.2	8
35	Wood chips as soil conservation in field conditions. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	8
36	Identifying environmental risk associated with anthropogenic activities in Zanjanrud River, Iran, using an integrated approach. Catena, 2019, 183, 104156.	5.0	8

#	Article	IF	CITATIONS
37	Effect of storm pattern on soil erosion in damaged rangeland; field rainfall simulation approach. Journal of Mountain Science, 2021, 18, 706-715.	2.0	8
38	Annual suspended sediment concentration frequency analysis in Sefidroud basin, Iran. Modeling Earth Systems and Environment, $2016, 2, 1$.	3.4	6
39	Data Mining Technique (Maximum Entropy Model) for Mapping Gully Erosion Susceptibility in the Gorganrood Watershed, Iran. Advances in Science, Technology and Innovation, 2020, , 427-448.	0.4	6
40	Effectiveness of native wood strand mulches for land rehabilitation in Iran under experimental conditions. Land Degradation and Development, 2020, 31, 581-590.	3.9	5
41	Runoff and sediment yield modeling in data-sparse catchments in the Garehsoo River basin, northern Iran. Environmental Earth Sciences, 2020, 79, 1.	2.7	2
42	Effect of Vermicompost on Soil and Runoff Properties in Northern Iran. Compost Science and Utilization, 2020, 28, 129-135.	1.2	2
43	Application of Vegetative Buffer Strips Under Natural Rainfall to Conserve Soil and Water. Agriculture, 2018, 64, 17-27.	0.4	0