Meiming Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8027079/publications.pdf

Version: 2024-02-01

44 papers 1,300 citations

331670 21 h-index 36 g-index

46 all docs

46 docs citations

46 times ranked

1572 citing authors

#	Article	IF	CITATIONS
1	Catalytic Cleavage of Unactivated C(aryl)–P Bonds by Chromium. Organic Letters, 2022, 24, 1581-1586.	4.6	4
2	Chromium-Catalyzed Selective Cross-Electrophile Coupling between Unactivated C(aryl)–F and C(aryl)–O Bonds. Organometallics, 2022, 41, 561-568.	2.3	7
3	Chromium-catalyzed couplings of C(aryl)–SMe bonds for accessing arylated and alkylated benzaldehyde derivatives. Chemical Communications, 2022, 58, 7094-7097.	4.1	4
4	Chromium-Catalyzed Ligand-Free Amidation of Esters with Anilines. Bulletin of the Chemical Society of Japan, 2021, 94, 762-766.	3.2	4
5	Chromium-Catalyzed Borylative Coupling of Aliphatic Bromides with Pinacolborane by Hydrogen Evolution. Organometallics, 2021, 40, 2204-2208.	2.3	5
6	Cyclic (Alkyl)(amino)carbene Ligand-Promoted Nitro Deoxygenative Hydroboration with Chromium Catalysis: Scope, Mechanism, and Applications. Journal of the American Chemical Society, 2021, 143, 1618-1629.	13.7	56
7	Reductive Cross-Coupling between Unactivated C(aryl)–N and C(aryl)–O Bonds by Chromium Catalysis Using a Bipyridyl Ligand. Journal of the American Chemical Society, 2020, 142, 12834-12840.	13.7	33
8	Chemoselective Cross-Coupling between Two Different and Unactivated C(aryl)–O Bonds Enabled by Chromium Catalysis. Journal of the American Chemical Society, 2020, 142, 7715-7720.	13.7	57
9	Accessing Difluoromethylated and Trifluoromethylated <i>cis</i> àê€Cycloalkanes and Saturated Heterocycles: Preferential Hydrogen Addition to the Substitution Sites for Dearomatization. Angewandte Chemie - International Edition, 2019, 58, 16785-16789.	13.8	44
10	Modular Arene Difunctionalization of Unactivated C–O and C–H Bonds by Sequential Chromium-Catalyzed Transformations. Organic Letters, 2019, 21, 6869-6873.	4.6	16
11	Iron and Phenol Co atalysis for Rapid Synthesis of Nitriles under Mild Conditions. European Journal of Organic Chemistry, 2019, 2019, 4617-4623.	2.4	11
12	Chromium-Catalyzed Activation of Acyl C–O Bonds with Magnesium for Amidation of Esters with Nitroarenes. Organic Letters, 2019, 21, 1912-1916.	4.6	43
13	Hydrogenation of (Hetero)aryl Boronate Esters with a Cyclic (Alkyl)(amino)carbene–Rhodium Complex: Direct Access to <i>cis</i> â€Substituted Borylated Cycloalkanes and Saturated Heterocycles. Angewandte Chemie - International Edition, 2019, 58, 6554-6558.	13.8	39
14	Directortho-Selective Amination of 2-Naphthol and Its Analogues with Hydrazines. Journal of Organic Chemistry, 2018, 83, 5082-5091.	3.2	11
15	Chromium-Catalyzed Regioselective Kumada Arylative Cross-Coupling of C(aryl)–O Bonds with a Traceless Activation Strategy. Journal of Organic Chemistry, 2018, 83, 13549-13559.	3.2	22
16	Kumada Arylation of Secondary Amides Enabled by Chromium Catalysis for Unsymmetric Ketone Synthesis under Mild Conditions. ACS Catalysis, 2018, 8, 5864-5868.	11.2	50
17	Regioselective and Chemoselective Reduction of Naphthols Using Hydrosilane in Methanol: Synthesis of the 5,6,7,8-Tetrahydronaphthol Core. Organic Letters, 2018, 20, 4159-4163.	4.6	13
18	One-Step Synthesis of Unsymmetric 1,1'-Biaryl-2,2'-diamines by the Reaction of 2-Naphthols with Aryl Hydrazines. Chinese Journal of Organic Chemistry, 2018, 38, 443.	1.3	1

#	Article	IF	CITATIONS
19	Low-Valent, High-Spin Chromium-Catalyzed Cleavage of Aromatic Carbon–Nitrogen Bonds at Room Temperature: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2017, 139, 15182-15190.	13.7	62
20	Chromium-Catalyzed, Regioselective Cross-Coupling of C–O Bonds by Using Organic Bromides as Reactants. Synlett, 2017, 28, 2577-2580.	1.8	37
21	Iron-catalyzed synthesis of benzoxazoles by oxidative coupling/cyclization of phenol derivatives with benzoyl aldehyde oximes. Chemical Communications, 2017, 53, 9886-9889.	4.1	27
22	Catalytic Synthesis of 3-Thioindoles Using Bunte Salts as Sulfur Sources under Metal-Free Conditions. Journal of Organic Chemistry, 2016, 81, 4262-4268.	3.2	76
23	Iron atalyzed Direct Alkylamination of Phenols with <i>O</i> â€Benzoylâ€ <i>N</i> â€alkylhydroxylamines under Mild Conditions. Advanced Synthesis and Catalysis, 2016, 358, 3840-3846.	4.3	12
24	Preparation and characterization of low density Poly (Imino Imino Ketone) foam. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 700-704.	1.0	0
25	Iron-catalyzed synthesis of arylsulfinates through radical coupling reaction. Chemical Communications, 2016, 52, 2980-2983.	4.1	96
26	Iron-Catalyzed $\langle i \rangle N \langle i \rangle$ -Arylsulfonamide Formation through Directly Using Nitroarenes as Nitrogen Sources. Journal of Organic Chemistry, 2015, 80, 3504-3511.	3.2	64
27	Synthesis and catalytic activity of nickel(II) complexes of CNC pincer-type N-heterocyclic carbene ligands. Journal of Organometallic Chemistry, 2015, 788, 27-32.	1.8	21
28	Methyl Salicylate as a Selective Methylation Agent for the Esterification of Carboxylic Acids. Synthesis, 2014, 46, 263-268.	2.3	6
29	POSS-based hybrid porous materials with exceptional hydrogen uptake at low pressure. Microporous and Mesoporous Materials, 2014, 193, 35-39.	4.4	22
30	Preparation and characterization of polyhedral oligomeric silsesquioxane–titania aerogels. Journal of Porous Materials, 2013, 20, 1017-1022.	2.6	10
31	A Convenient and General Reduction of Amides to Amines with Lowâ€Valent Titanium. Advanced Synthesis and Catalysis, 2013, 355, 2775-2780.	4.3	26
32	New cyclen derivative ligand for thorium(IV) separation by solvent extraction. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 125-133.	1.5	16
33	Catalytic desulfitative homocoupling of sodium arylsulfinates in water using PdCl2 as the recyclable catalyst and O2 as the terminal oxidant. Green Chemistry, 2012, 14, 3436.	9.0	82
34	Group IV Mâ€POSS (M=Zr, Hf) Coordination Polymers. Chinese Journal of Chemistry, 2012, 30, 2591-2594.	4.9	4
35	Acyclic Palladium(II)―N â€heterocyclic Carbene Metallacrown Ether Complexes: Synthesis, Structure and Catalytic Activity. Chinese Journal of Chemistry, 2012, 30, 1423-1428.	4.9	5
36	Reduction of hydrazines to amines with aqueous solution of titanium(iii) trichloride. Organic and Biomolecular Chemistry, 2011, 9, 4977.	2.8	43

#	Article	IF	CITATION
37	Homocoupling of Arylboronic Acids Catalyzed by CuCl in Air at Room Temperature. European Journal of Organic Chemistry, 2011, 2011, 2519-2523.	2.4	84
38	Catalystâ€free preparation of polyhedral oligomeric silsesquioxanes containing Organic–Inorganic hybrid mesoporous nanocomposites. Journal of Applied Polymer Science, 2011, 121, 97-101.	2.6	4
39	Preparation of POSS-based organic–inorganic hybrid mesoporous materials networks through Schiff base chemistry. European Polymer Journal, 2011, 47, 853-860.	5.4	41
40	Preparation of Hybrid Nanocomposites from Polyhedral Oligomeric Silsesquioxane Through Heck Reactions. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 631-634.	0.6	0
41	Preparation of Organic-Inorganic Hybrid Nanocomposites via Pd-Catalyzed Amination of Dibromobenzene with Octa(aminophenyl)silsesquioxane. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 279-283.	0.6	0
42	Poly(methyl methacrylate)/Methacrylâ€POSS Nanocomposites with Excellent Thermal Properties. Chinese Journal of Chemistry, 2010, 28, 2527-2532.	4.9	13
43	A New Method for Nâ^'N Bond Cleavage of N,N-Disubstituted Hydrazines to Secondary Amines and Direct Ortho Amination of Naphthol and Its Analogues. Journal of the American Chemical Society, 2008, 130, 5840-5841.	13.7	39
44	Synthesis, Structure, and Catalytic Activity of Palladium(II) Complexes of New CNC Pincer-Type N-Heterocyclic Carbene Ligands. Organometallics, 2008, 27, 2268-2272.	2.3	90