James H Roberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8026934/publications.pdf

Version: 2024-02-01

44 papers 2,809 citations

236833 25 h-index 289141 40 g-index

47 all docs

47 docs citations

47 times ranked

2411 citing authors

#	Article	IF	CITATIONS
1	The Formation of Terraces on Asteroid (101955) Bennu. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	14
2	Endogenic origin of the Martian hemispheric dichotomy. , 2021, , 499-522.		0
3	Ensuring Inclusivity in the 2023 Planetary Science and Astrobiology Decadal Survey., 2021, 53,.		O
4	Enabling the Planetary Workforce to do the best science by funding work that is a service to the Profession. , $2021, 53, .$		0
5	Recommendations for Addressing Priority Io Science in the Next Decade. , 2021, 53, .		O
6	Triton: Fascinating Moon, Likely Ocean World, Compelling Destination!., 2021, 53, .		1
7	The Science Case for Io Exploration. , 2021, 53, .		1
8	Breaking the symmetry by breaking the ice shell: An impact origin for the south polar terrain of Enceladus. Icarus, 2021, 359, 114302.	1.1	8
9	Triton: Fascinating Moon, Likely Ocean World, Compelling Destination!. Planetary Science Journal, 2021, 2, 137.	1.5	15
10	Neptune Odyssey: A Flagship Concept for the Exploration of the Neptune–Triton System. Planetary Science Journal, 2021, 2, 184.	1.5	11
11	The Morphometry of Impact Craters on Bennu. Geophysical Research Letters, 2020, 47, e2020GL089672.	1.5	20
12	Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nature Geoscience, 2019, 12, 247-252.	5.4	179
13	Modeling an exogenic origin for the equatorial ridge on lapetus. lcarus, 2018, 307, 197-206.	1.1	8
14	Effects of basin-forming impacts on the thermal evolution and magnetic field of Mars. Earth and Planetary Science Letters, 2017, 478, 192-202.	1.8	13
15	Mean radius and shape of Pluto and Charon from New Horizons images. Icarus, 2017, 287, 12-29.	1.1	105
16	Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature, 2016, 540, 94-96.	13.7	108
17	The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature, 2016, 539, 65-68.	13.7	44
18	Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour. Nature, 2016, 534, 82-85.	13.7	102

#	Article	IF	Citations
19	The atmosphere of Pluto as observed by New Horizons. Science, 2016, 351, aad8866.	6.0	201
20	Pluto's interaction with its space environment: Solar wind, energetic particles, and dust. Science, 2016, 351, aad9045.	6.0	60
21	The geology of Pluto and Charon through the eyes of New Horizons. Science, 2016, 351, 1284-1293.	6.0	219
22	The lowâ€degree shape of Mercury. Geophysical Research Letters, 2015, 42, 6951-6958.	1.5	36
23	The fluffy core of Enceladus. Icarus, 2015, 258, 54-66.	1.1	61
24	The Pluto system: Initial results from its exploration by New Horizons. Science, 2015, 350, aad1815.	6.0	407
25	Origin and flatness of ponds on asteroid 433 Eros. Meteoritics and Planetary Science, 2014, 49, 1735-1748.	0.7	16
26	Observational bias and the apparent distribution of ponds on Eros. Icarus, 2014, 241, 160-164.	1.1	7
27	Impact heating and coupled core cooling and mantle dynamics on Mars. Journal of Geophysical Research E: Planets, 2014, 119, 729-744.	1.5	27
28	Could giant basinâ€forming impacts have killed Martian dynamo?. Geophysical Research Letters, 2014, 41, 8006-8012.	1.5	4
29	Thermal evolution of Mercury as constrained by MESSENGER observations. Journal of Geophysical Research E: Planets, 2013, 118, 1033-1044.	1.5	63
30	Convectionâ€driven compaction as a possible origin of Enceladus's long wavelength topography. Journal of Geophysical Research E: Planets, 2013, 118, 908-915.	1.5	40
31	Subcontinental sinking slab remnants in a spherical geometry mantle model. Journal of Geophysical Research: Solid Earth, 2013, 118, 1760-1777.	1.4	5
32	Sustainability of a subsurface ocean within Triton's interior. Icarus, 2012, 220, 339-347.	1.1	63
33	The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. Journal of Geophysical Research, 2012, 117, .	3.3	44
34	Impact-induced mantle dynamics on Mars. Icarus, 2012, 218, 278-289.	1.1	32
35	Impact basin relaxation at lapetus. Icarus, 2011, 214, 82-90.	1.1	23
36	Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 2010, 209, 210-223.	1.1	82

#	Article	IF	CITATIONS
37	Giant impacts on early Mars and the cessation of the Martian dynamo. Journal of Geophysical Research, 2009, 114, .	3.3	93
38	Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus, 2008, 194, 675-689.	1.1	171
39	Nearâ€surface heating on Enceladus and the south polar thermal anomaly. Geophysical Research Letters, 2008, 35, .	1.5	29
40	Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth and Planetary Science Letters, 2007, 261, 551-564.	1.8	253
41	The cause for the north–south orientation of the crustal dichotomy and the equatorial location of Tharsis on Mars. Icarus, 2007, 190, 24-31.	1.1	24
42	Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. Journal of Geophysical Research, 2006, 111 , .	3.3	141
43	Plume-induced topography and geoid anomalies and their implications for the Tharsis rise on Mars. Journal of Geophysical Research, 2004, 109, .	3. 3	45
44	On the support of the Tharsis Rise on Mars. Earth and Planetary Science Letters, 2003, 214, 1-9.	1.8	29