Christine Stadelmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8026902/publications.pdf

Version: 2024-02-01

182 papers

21,407 citations

68 h-index 139 g-index

188 all docs 188 docs citations

188 times ranked 25707 citing authors

#	Article	IF	CITATIONS
1	Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain, 2005, 128, 2705-2712.	7.6	1,558
2	Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 2020, 370, 856-860.	12.6	1,441
3	Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nature Neuroscience, 2021, 24, 168-175.	14.8	991
4	Activated Human T Cells, B Cells, and Monocytes Produce Brain-derived Neurotrophic Factor In Vitro and in Inflammatory Brain Lesions: A Neuroprotective Role of Inflammation?. Journal of Experimental Medicine, 1999, 189, 865-870.	8.5	951
5	Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature, 2019, 566, 388-392.	27.8	853
6	Remyelination is extensive in a subset of multiple sclerosis patients. Brain, 2006, 129, 3165-3172.	7.6	667
7	The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nature Immunology, 2007, 8, 958-966.	14.5	620
8	Intrathecal pathogenic anti–aquaporinâ€4 antibodies in early neuromyelitis optica. Annals of Neurology, 2009, 66, 617-629.	5.3	516
9	Activation of Caspase-3 in Single Neurons and Autophagic Granules of Granulovacuolar Degeneration in Alzheimer's Disease. American Journal of Pathology, 1999, 155, 1459-1466.	3.8	415
10	BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells?. Brain, 2002, 125, 75-85.	7.6	394
11	Staging of Neurofibrillary Pathology in Alzheimer's Disease: A Study of the BrainNet Europe Consortium. Brain Pathology, 2008, 18, 484-496.	4.1	361
12	Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiological Reviews, 2019, 99, 1381-1431.	28.8	336
13	Widespread Demyelination in the Cerebellar Cortex in Multiple Sclerosis. Brain Pathology, 2007, 17, 38-44.	4.1	301
14	Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program. Cell, 2019, 179, 1609-1622.e16.	28.9	292
15	Preferential Loss of Myelin-Associated Glycoprotein Reflects Hypoxia-Like White Matter Damage in Stroke and Inflammatory Brain Diseases. Journal of Neuropathology and Experimental Neurology, 2003, 62, 25-33.	1.7	283
16	Extensive Cortical Remyelination in Patients with Chronic Multiple Sclerosis. Brain Pathology, 2007, 17, 129-138.	4.1	265
17	Neurotrophic cross-talk between the nervous and immune systems: Implications for neurological diseases. Annals of Neurology, 2003, 53, 292-304.	5.3	260
18	Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6064-6069.	7.1	253

#	Article	IF	CITATIONS
19	Epstein–Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain, 2009, 132, 3318-3328.	7.6	243
20	Detection of apoptosis in tissue sections. Cell and Tissue Research, 2000, 301, 19-31.	2.9	222
21	The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. Journal of Neuroimmunology, 2000, 107, 161-166.	2.3	218
22	Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19057-19062.	7.1	213
23	Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity, 2021, 54, 1594-1610.e11.	14.3	210
24	Inflammation, demyelination, and degeneration $\hat{a} \in \mathbb{C}^n$ Recent insights from MS pathology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 275-282.	3.8	207
25	Tissue preconditioning may explain concentric lesions in Bal \tilde{A}^3 's type of multiple sclerosis. Brain, 2005, 128, 979-987.	7.6	206
26	A new focal EAE model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination. Brain, 2006, 129, 1972-1983.	7.6	200
27	Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurology, The, 2020, 19, 678-688.	10.2	193
28	Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 1998, 57, 456-464.	1.7	191
29	A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Annals of Neurology, 2001, 49, 793-796.	5. 3	188
30	Microglia promote colonization of brain tissue by breast cancer cells in a Wntâ€dependent way. Glia, 2010, 58, 1477-1489.	4.9	184
31	Remyelination in multiple sclerosis. Journal of the Neurological Sciences, 2003, 206, 181-185.	0.6	175
32	Expression of the immune-tolerogenic major histocompatibility molecule HLA-G in multiple sclerosis: implications for CNS immunity. Brain, 2005, 128, 2689-2704.	7.6	170
33	Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathologica, 2013, 125, 595-608.	7.7	169
34	The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nature Neuroscience, 2021, 24, 1522-1533.	14.8	164
35	Association between pathological and MRI findings in multiple sclerosis. Lancet Neurology, The, 2019, 18, 198-210.	10.2	163
36	Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A. Nature Medicine, 2014, 20, 1055-1061.	30.7	160

#	Article	IF	Citations
37	Enhancing remyelination in diseasecan we wrap it up?. Brain, 2011, 134, 1882-1900.	7.6	157
38	Reduced astrocytic NF-κB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathologica, 2012, 124, 411-424.	7.7	142
39	Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. Journal of Clinical Investigation, 2008, 118, 3403-10.	8.2	142
40	GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nature Medicine, 2019, 25, 1290-1300.	30.7	140
41	Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Current Opinion in Neurology, 2011, 24, 224-229.	3.6	138
42	BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions. Science Translational Medicine, $2017, 9, .$	12.4	138
43	B lymphocytes in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e104.	6.0	132
44	Remodeling of Axonal Connections Contributes to Recovery in an Animal Model of Multiple Sclerosis. Journal of Experimental Medicine, 2004, 200, 1027-1038.	8.5	128
45	Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. ELife, 2018, 7, .	6.0	128
46	Wallerian Degeneration: A Major Component of Early Axonal Pathology in Multiple Sclerosis. Brain Pathology, 2010, 20, 976-985.	4.1	127
47	Laquinimod interferes with migratory capacity of T cells and reduces IL-17 levels, inflammatory demyelination and acute axonal damage in mice with experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2010, 227, 133-143.	2.3	118
48	Combined therapy with methylprednisolone and erythropoietin in a model of multiple sclerosis. Brain, 2004, 128, 375-385.	7.6	117
49	Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6940-6945.	7.1	112
50	\hat{l}^2 -Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature, 2019, 566, 503-508.	27.8	109
51	Assessment of lesion pathology in a new animal model of MS by multiparametric MRI and DTI. Neurolmage, 2012, 59, 2678-2688.	4.2	108
52	Cortical pathology in multiple sclerosis. Current Opinion in Neurology, 2008, 21, 229-234.	3.6	107
53	Glycoprotein NMB: a novel Alzheimer's disease associated marker expressed in a subset of activated microglia. Acta Neuropathologica Communications, 2018, 6, 108.	5.2	107
54	Targeting Experimental Autoimmune Encephalomyelitis Lesions to a Predetermined Axonal Tract System Allows for Refined Behavioral Testing in an Animal Model of Multiple Sclerosis. American Journal of Pathology, 2004, 164, 1455-1469.	3.8	106

#	Article	IF	Citations
55	Thermal hypoaesthesia differentiates secondary restless legs syndrome associated with small fibre neuropathy from primary restless legs syndrome. Brain, 2010, 133, 762-770.	7.6	105
56	<scp>NMDAR</scp> encephalitis: passive transfer from man to mouse by a recombinant antibody. Annals of Clinical and Translational Neurology, 2017, 4, 768-783.	3.7	101
57	Pivotal Role for CD16+ Monocytes in Immune Surveillance of the Central Nervous System. Journal of Immunology, 2016, 196, 1558-1567.	0.8	96
58	Frequency of BRAF V600E mutations in 969 central nervous system neoplasms. Diagnostic Pathology, 2016, 11, 55.	2.0	95
59	Loss of Myelin Basic Protein Function Triggers Myelin Breakdown in Models of Demyelinating Diseases. Cell Reports, 2016, 16, 314-322.	6.4	93
60	Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis. Journal of Experimental Medicine, 2020, 217, .	8.5	87
61	Problems of cell death in neurodegeneration and Alzheimer's Disease. Journal of Alzheimer's Disease, 2001, 3, 31-40.	2.6	86
62	Inter-laboratory comparison of neuropathological assessments of \hat{l}^2 -amyloid protein: a study of the BrainNet Europe consortium. Acta Neuropathologica, 2008, 115, 533-546.	7.7	86
63	Axonal Loss and Neurofilament Phosphorylation Changes Accompany Lesion Development and Clinical Progression in Multiple Sclerosis. Brain Pathology, 2011, 21, 428-440.	4.1	85
64	Multicontrast MRI of remyelination in the central nervous system. NMR in Biomedicine, 2005, 18, 395-403.	2.8	81
65	${ m Na} ilde{A}^{-}{ m ve}$ CD8 T-cells initiate spontaneous autoimmunity to a sequestered model antigen of the central nervous system. Brain, 2008, 131, 2353-2365.	7.6	79
66	The metastatic infiltration at the metastasis/brain parenchyma-interface is very heterogeneous and has a significant impact on survival in a prospective study. Oncotarget, 2015, 6, 29254-29267.	1.8	77
67	Differential upregulation of heme oxygenase-1 (HSP32) in glial cells after oxidative stress and in demyelinating disorders. Journal of Molecular Neuroscience, 2007, 32, 25-37.	2.3	76
68	Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis. Journal of Neuroinflammation, 2017, 14, 57.	7.2	76
69	Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen. Acta Neuropathologica, 2016, 132, 43-58.	7.7	75
70	Lipopolysaccharide Injection Induces Relapses of Experimental Autoimmune Encephalomyelitis in Nontransgenic Mice via Bystander Activation of Autoreactive CD4+ Cells. Journal of Immunology, 2005, 175, 959-966.	0.8	72
71	Differential contribution of immune effector mechanisms to cortical demyelination in multiple sclerosis. Acta Neuropathologica, 2017, 134, 15-34.	7.7	72
72	The spectrum of multiple sclerosis: new lessons from pathology. Current Opinion in Neurology, 2005, 18, 221-224.	3.6	69

#	Article	IF	CITATIONS
73	<scp>CD</scp> 14 is a key organizer of microglial responses to <scp>CNS</scp> infection and injury. Glia, 2016, 64, 635-649.	4.9	69
74	Carcinoma cells misuse the host tissue damage response to invade the brain. Glia, 2013, 61, 1331-1346.	4.9	68
75	Molecular Changes in White Matter Adjacent to an Active Demyelinating Lesion in Early Multiple Sclerosis. Brain Pathology, 2009, 19, 459-466.	4.1	67
76	Screening of several H-2 congenic mouse strains identified H-2q mice as highly susceptible to MOG-induced EAE with minimal adjuvant requirement. Journal of Neuroimmunology, 2000, 111, 23-33.	2.3	66
77	From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases. Brain, 2008, 131, 1686-1700.	7.6	66
78	Analyzing microglial phenotypes across neuropathologies: a practical guide. Acta Neuropathologica, 2021, 142, 923-936.	7.7	65
79	Tolerance induction by bone marrow transplantation in a multiple sclerosis model. Blood, 2005, 106, 1875-1883.	1.4	62
80	Macrophages Are Eliminated from the Injured Peripheral Nerve via Local Apoptosis and Circulation to Regional Lymph Nodes and the Spleen. Journal of Neuroscience, 2001, 21, 3401-3408.	3.6	61
81	The intrinsic pathogenic role of autoantibodies to aquaporin 4 mediating spinal cord disease in a rat passive-transfer model. Experimental Neurology, 2015, 265, 8-21.	4.1	59
82	PI3K: A master regulator of brain metastasisâ€promoting macrophages/microglia. Glia, 2018, 66, 2438-2455.	4.9	59
83	Microglia damage precedes major myelin breakdown in Xâ€linked adrenoleukodystrophy and metachromatic leukodystrophy. Glia, 2019, 67, 1196-1209.	4.9	59
84	Molecular signature of slowly expanding lesions in progressive multiple sclerosis. Brain, 2020, 143, 2073-2088.	7.6	57
85	Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9. Brain, 2015, 138, 1875-1893.	7.6	56
86	Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination. Glia, 2017, 65, 1350-1360.	4.9	56
87	Differential Macrophage/Microglia Activation in Neocortical EAE Lesions in the Marmoset Monkey. Brain Pathology, 2006, 16, 117-123.	4.1	54
88	Chronic White Matter Inflammation and Serum Neurofilament Levels in Multiple Sclerosis. Neurology, 2021, 97, e543-e553.	1.1	54
89	Ligands for PPAR \hat{I}^3 and RAR Cause Induction of Growth Inhibition and Apoptosis in Human Glioblastomas. Journal of Neuro-Oncology, 2003, 65, 107-118.	2.9	52
90	Neuroaxonal Regeneration is More Pronounced in Early Multiple Sclerosis than in Traumatic Brain Injury Lesions. Brain Pathology, 2013, 23, 2-12.	4.1	52

#	Article	IF	Citations
91	Expression of Stathmin, a Developmentally Controlled Cytoskeleton-Regulating Molecule, in Demyelinating Disorders. Journal of Neuroscience, 2005, 25, 737-747.	3.6	50
92	Substantial early, but nonprogressive neuronal loss in multiple sclerosis (ms) spinal cord. Annals of Neurology, 2009, 66, 698-704.	5.3	50
93	New targeted approaches for the quantification of dataâ€independent acquisition mass spectrometry. Proteomics, 2017, 17, 1700021.	2.2	49
94	The role of the cerebellum in multiple sclerosis—150 years after Charcot. Neuroscience and Biobehavioral Reviews, 2018, 89, 85-98.	6.1	48
95	Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia. Experimental Neurology, 2019, 320, 112958.	4.1	48
96	Early MRI changes in a mouse model of multiple sclerosis are predictive of severe inflammatory tissue damage. Brain, 2007, 130, 2186-2198.	7.6	47
97	Synaptic pathology in the cerebellar dentate nucleus in chronic multiple sclerosis. Brain Pathology, 2017, 27, 737-747.	4.1	47
98	The prognostic role of IDH mutations in homogeneously treated patients with anaplastic astrocytomas and glioblastomas. Acta Neuropathologica Communications, 2019, 7, 156.	5.2	47
99	Increased Expression of BDNF and Proliferation of Dentate Granule Cells After Bacterial Meningitis. Journal of Neuropathology and Experimental Neurology, 2005, 64, 806-815.	1.7	46
100	Differential regulation of myelin phagocytosis by macrophages/microglia, involvement of target myelin, Fc receptors and activation by intravenous immunoglobulins. Journal of Neuroscience Research, 2002, 67, 185-190.	2.9	45
101	Ischemia Leads to Apoptosis—and Necrosisâ€like Neuron Death in the Ischemic Rat Hippocampus. Brain Pathology, 2004, 14, 415-424.	4.1	45
102	Dopamine D ₃ Receptor Specifically Modulates Motor and Sensory Symptoms in Iron-Deficient Mice. Journal of Neuroscience, 2011, 31, 70-77.	3.6	45
103	Brain-resident memory T cells generated early in life predispose to autoimmune disease in mice. Science Translational Medicine, 2019, 11 , .	12.4	45
104	Infratentorial IDH-mutant astrocytoma is a distinct subtype. Acta Neuropathologica, 2020, 140, 569-581.	7.7	45
105	SFPQ and Tau: critical factors contributing to rapid progression of Alzheimer's disease. Acta Neuropathologica, 2020, 140, 317-339.	7.7	45
106	Targeted endomyocardial biopsy guided by real-time cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2016 , 19 , 45 .	3.3	44
107	Selective vulnerability of different types of commissural neurons for amyloid Â-protein-induced neurodegeneration in APP23 mice correlates with dendritic tree morphology. Brain, 2006, 129, 2992-3005.	7.6	43
108	Interplay between mechanisms of damage and repair in multiple sclerosis. Journal of Neurology, 2008, 255, 12-18.	3.6	43

#	Article	IF	CITATIONS
109	Disease Progression in Chronic Relapsing Experimental Allergic Encephalomyelitis Is Associated with Reduced Inflammation-Driven Production of Corticosterone. Endocrinology, 2001, 142, 3616-3624.	2.8	42
110	Hyperoxia Causes Inducible Nitric Oxide Synthase-Mediated Cellular Damage to the Immature Rat Brain. Pediatric Research, 2003, 54, 179-184.	2.3	42
111	Extensive subpial cortical demyelination is specific to multiple sclerosis. Brain Pathology, 2020, 30, 641-652.	4.1	42
112	Suppression of autoimmune encephalomyelitis by a neurokinin-1 receptor antagonist — A putative role for substance P in CNS inflammation. Journal of Neuroimmunology, 2006, 179, 1-8.	2.3	41
113	Bacterial Pore-Forming Cytolysins Induce Neuronal Damage in a Rat Model of Neonatal Meningitis. Journal of Infectious Diseases, 2011, 203, 393-400.	4.0	40
114	Comparing the pathogenesis of experimental autoimmune encephalomyelitis in CD4â^'/â^' and CD8â^'/â^' DBA/1 mice defines qualitative roles of different T cell subsets. Journal of Neuroimmunology, 2003, 141, 10-19.	2.3	39
115	Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions. Acta Neuropathologica, 2014, 127, 523-538.	7.7	38
116	¹⁸ F-FDG PET Detects Inflammatory Infiltrates in Spinal Cord Experimental Autoimmune Encephalomyelitis Lesions. Journal of Nuclear Medicine, 2012, 53, 1269-1276.	5.0	36
117	Distinct roles of the meningeal layers in CNS autoimmunity. Nature Neuroscience, 2022, 25, 887-899.	14.8	36
118	Severe Spinal Muscular Atrophy Variant Associated With Congenital Bone Fractures. Journal of Child Neurology, 2002, 17, 718-721.	1.4	35
119	Effects of interferon-beta-1a on neuronal survival under autoimmune inflammatory conditions. Experimental Neurology, 2006, 201, 172-181.	4.1	34
120	Transcript profiling of different types of multiple sclerosis lesions yields FGF1 as a promoter of remyelination. Acta Neuropathologica Communications, 2014, 2, 168.	5.2	34
121	Expression of Cell Deathâ€Associated Proteins in Neuronal Apoptosis Associated with Pontosubicular Neuron Necrosis. Brain Pathology, 2001, 11, 273-281.	4.1	31
122	Oligodendroglia in cortical multiple sclerosis lesions decrease with disease progression, but regenerate after repeated experimental demyelination. Acta Neuropathologica, 2014, 128, 231-246.	7.7	31
123	Correlative x-ray phase-contrast tomography and histology of human brain tissue affected by Alzheimer's disease. NeuroImage, 2020, 210, 116523.	4.2	31
124	An N-terminally truncated envelope protein encoded by a human endogenous retrovirus W locus on chromosome Xq22.3. Retrovirology, 2010, 7, 69.	2.0	30
125	Fas (CD95/Apo-1)/Fas Ligand Expression in Neonates with Pontosubicular Neuron Necrosis. Pediatric Research, 2002, 51, 129-135.	2.3	29
126	Behavioral testing strategies in a localized animal model of multiple sclerosis. Journal of Neuroimmunology, 2004, 153, 158-170.	2.3	29

#	Article	IF	CITATIONS
127	Calcium Influx and Calpain Activation Mediate Preclinical Retinal Neurodegeneration in Autoimmune Optic Neuritis. Journal of Neuropathology and Experimental Neurology, 2013, 72, 745-757.	1.7	29
128	Membraneâ€type 1 metalloproteinase is upregulated in microglia/brain macrophages in neurodegenerative and neuroinflammatory diseases. Journal of Neuroscience Research, 2014, 92, 275-286.	2.9	29
129	Diagnostic red flags: steroidâ€treated malignant CNS lymphoma mimicking autoimmune inflammatory demyelination. Brain Pathology, 2018, 28, 225-233.	4.1	28
130	A New Advanced <scp>MRI</scp> Biomarker for Remyelinated Lesions in Multiple Sclerosis. Annals of Neurology, 2022, 92, 486-502.	5.3	28
131	$PI3K\hat{I}^3$ deficiency delays the onset of experimental autoimmune encephalomyelitis and ameliorates its clinical outcome. European Journal of Immunology, 2011, 41, 833-844.	2.9	27
132	FGF/FGFR Pathways in Multiple Sclerosis and in Its Disease Models. Cells, 2021, 10, 884.	4.1	27
133	MALDI imaging mass spectrometry analysis—A new approach for protein mapping in multiple sclerosis brain lesions. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1047, 131-140.	2.3	26
134	Expression of Deathâ€related Proteins in Dentate Granule Cells in Human Bacterial Meningitis. Brain Pathology, 2001, 11, 422-431.	4.1	25
135	Remyelination After Cuprizone-Induced Demyelination Is Accelerated in Juvenile Mice. Journal of Neuropathology and Experimental Neurology, 2015, 74, 756-766.	1.7	25
136	Oligodendroglial fibroblast growth factor receptor 1 gene targeting protects mice from experimental autoimmune encephalomyelitis through <scp>ERK/AKT</scp> phosphorylation. Brain Pathology, 2018, 28, 212-224.	4.1	25
137	Apoptosis of T lymphocytes in acute disseminated encephalomyelitis. Acta Neuropathologica, 1999, 97, 543-546.	7.7	24
138	Increased HLA-DR expression and cortical demyelination in MS links with HLA-DR15. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7 , .	6.0	24
139	Intrathecal anti― <scp>CD</scp> 20 efficiently depletes meningeal B cells in <scp>CNS</scp> autoimmunity. Annals of Clinical and Translational Neurology, 2014, 1, 490-496.	3.7	23
140	LEF1 supports metastatic brain colonization by regulating glutathione metabolism and increasing ROS resistance in breast cancer. International Journal of Cancer, 2020, 146, 3170-3183.	5.1	23
141	Laquinimod, a prototypic quinoline-3-carboxamide and aryl hydrocarbon receptor agonist, utilizes a CD155-mediated natural killer/dendritic cell interaction to suppress CNS autoimmunity. Journal of Neuroinflammation, 2019, 16, 49.	7.2	22
142	Human Glioma–Initiating Cells Show a Distinct Immature Phenotype Resembling but Not Identical to NG2 Glia. Journal of Neuropathology and Experimental Neurology, 2013, 72, 307-324.	1.7	21
143	Increased Meningeal <scp>T</scp> and Plasma Cell Infiltration is Associated with Early Subpial Cortical Demyelination in Common Marmosets with Experimental Autoimmune Encephalomyelitis. Brain Pathology, 2015, 25, 276-286.	4.1	21
144	Cerebrospinal fluid abnormalities in meningeosis neoplastica: a retrospective 12 -year analysis. Fluids and Barriers of the CNS, 2017 , 14 , 7 .	5.0	21

#	Article	IF	CITATIONS
145	MOG-expressing teratoma followed by MOG-lgG-positive optic neuritis. Acta Neuropathologica, 2021, 141, 127-131.	7.7	21
146	Tissue-resident memory CD8 ⁺ T cells cooperate with CD4 ⁺ T cells to drive compartmentalized immunopathology in the CNS. Science Translational Medicine, 2022, 14, eabl6058.	12.4	21
147	Three-dimensional virtual histology of the human hippocampus based on phase-contrast computed tomography. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
148	Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration. Journal of Clinical Investigation, 2021, 131, .	8.2	18
149	Gray matter pathology and multiple sclerosis. Current Neurology and Neuroscience Reports, 2009, 9, 399-404.	4.2	16
150	Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nature Communications, 2021, 12, 6530.	12.8	16
151	Glial fibrillary acidic protein expression alters astrocytic chemokine release and protects mice from cuprizoneâ€induced demyelination. Glia, 2019, 67, 1308-1319.	4.9	15
152	Phase-contrast x-ray tomography of neuronal tissue at laboratory sources with submicron resolution. Journal of Medical Imaging, 2020, 7, 1.	1.5	15
153	Simvastatin treatment does not protect retinal ganglion cells from degeneration in a rat model of autoimmune optic neuritis. Experimental Neurology, 2005, 193, 163-171.	4.1	14
154	Extensive brain demyelinating lesions under natalizumab: The role of anti-natalizumab antibodies. Neurology, 2015, 85, 1630-1632.	1.1	14
155	Lack of astrocytes hinders parenchymal oligodendrocyte precursor cells from reaching a myelinating state in osmolyte-induced demyelination. Acta Neuropathologica Communications, 2020, 8, 224.	5.2	14
156	Exogenous Schwann Cells Migrate, Remyelinate and Promote Clinical Recovery in Experimental Auto-Immune Encephalomyelitis. PLoS ONE, 2012, 7, e42667.	2.5	13
157	TSPO PET imaging of natalizumab-associated progressive multifocal leukoencephalopathy. Brain, 2021, 144, 2683-2695.	7.6	13
158	The transitional phase of multiple sclerosis: Characterization and conceptual framework. Multiple Sclerosis and Related Disorders, 2020, 44, 102242.	2.0	12
159	Oligodendrocyteâ€specific deletion of FGFR2 ameliorates MOG _{35â€55} â€induced EAE through ERK and Akt signalling. Brain Pathology, 2021, 31, 297-311.	4.1	12
160	Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model. PLoS ONE, 2016, 11, e0168174.	2.5	11
161	Three-dimensional virtual histology of the cerebral cortex based on phase-contrast X-ray tomography. Biomedical Optics Express, 2021, 12, 7582.	2.9	10
162	A new form of axonal pathology in a spinal model of neuromyelitis optica. Brain, 2022, 145, 1726-1742.	7.6	10

#	Article	IF	Citations
163	Expression of Olig2, Nestin, NogoA and AQP4 have no impact on overall survival in IDH-wildtype glioblastoma. PLoS ONE, 2020, 15, e0229274.	2.5	9
164	Brain derived neurotrophic factor does not act on adult human cerebral endothelial cells. Neuroscience Letters, 2002, 330, 175-178.	2.1	7
165	Effects of FGFR Tyrosine Kinase Inhibition in OLN-93 Oligodendrocytes. Cells, 2021, 10, 1318.	4.1	7
166	Concurrent axon and myelin destruction differentiates Xâ€linked adrenoleukodystrophy from multiple sclerosis. Glia, 2021, 69, 2362-2377.	4.9	7
167	Atypical Appearance of a Primary Central Nervous System Lymphoma. Archives of Neurology, 2006, 63, 908.	4.5	6
168	Endoscope-assisted fluorescence-guided resection allowing supratotal removal in glioblastoma surgery. Neurosurgical Focus, 2021, 50, E3.	2.3	6
169	Oligodendrocyte-Specific Deletion of FGFR1 Reduces Cerebellar Inflammation and Neurodegeneration in MOG35-55-Induced EAE. International Journal of Molecular Sciences, 2021, 22, 9495.	4.1	6
170	Nanoscale x-ray holotomography of human brain tissue with phase retrieval based on multienergy recordings. Journal of Medical Imaging, 2020, 7, 1.	1.5	6
171	Multifocal Osteochondroma After Repeated Irradiation in a Boy With Hodgkin Disease. Journal of Pediatric Hematology/Oncology, 2005, 27, 344-345.	0.6	5
172	Neuropathology associated with SARS-CoV-2 infection. Lancet, The, 2021, 397, 276-277.	13.7	5
173	Imaging multiple sclerosis pathology at $160 \hat{A} \hat{I} / 4$ m isotropic resolution by human whole-brain ex vivo magnetic resonance imaging at $3 \hat{A} \hat{I}$. Scientific Reports, 2021, 11, 15491.	3.3	5
174	The impact of transcranial direct current stimulation on cerebral vasospasm in a rat model of subarachnoid hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 0271678X2199013.	4.3	4
175	Case Report: Findings Suggestive of Paraclinical Progressive Multifocal Leukoencephalopathy and Lung Cancer-Derived Brain Metastases in an MS Patient Treated With Fingolimod. Frontiers in Neurology, 2021, 12, 561158.	2.4	3
176	T cell abundance in blood predicts acute organ toxicity in chemoradiotherapy for head and neck cancer. Oncotarget, 2016, 7, 65902-65915.	1.8	3
177	Clinicopathological considerations in acute disseminated encephalomyelitis (ADEM): a fulminant case with favorable outcome. Journal of Neurology, 2012, 259, 753-755.	3.6	2
178	The ESAS-score: A histological severity grading system of subarachnoid hemorrhage using the modified double hemorrhage model in rats. PLoS ONE, 2020, 15, e0227349.	2.5	2
179	Phase-contrast x-ray tomography of neuronal tissue at laboratory sources with submicron resolution. , 2019, , .		2
180	Apoptotischer Zelltod bei neuroinflammatorischen und neurodegenerativen Erkrankungen. Aktuelle Neurologie, 2001, 28, 17-25.	0.1	0

#	Article	IF	CITATIONS
181	CNS Inflammation. , 2005, , 85-93.		0
182	Pathologie und Immunpathogenese der Multiplen Sklerose., 2013,, 13-25.		0