Huawei Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8026838/publications.pdf

Version: 2024-02-01

HUAWEL CHEN

#	Article	IF	CITATIONS
1	Artificial Whisker Sensor with Undulated Morphology and Self-Spread Piezoresistors for Diverse Flow Analyses. Soft Robotics, 2023, 10, 97-105.	4.6	9
2	Recent Advances in Field ontrolled Micro–Nano Manipulations and Micro–Nano Robots. Advanced Intelligent Systems, 2022, 4, 2100116.	3.3	39
3	Characterization of biological micro/nano interfacial structures for friction reduction and friction increase. , 2022, , 55-86.		Ο
4	Surgical instruments with lubrication and friction enhancement through bioinspired surfaces. , 2022, , 227-264.		0
5	Bristled-wing design of materials, microstructures, and aerodynamics enables flapping flight in tiny wasps. IScience, 2022, 25, 103692.	1.9	15
6	Magnetically Actuated Cellâ€Robot System: Precise Control, Manipulation, and Multimode Conversion. Small, 2022, 18, e2105414.	5.2	21
7	Liquid-Infused Porous Film Self-Assembly for Superior Light-Transmitting and Anti-Adhesion. Micromachines, 2022, 13, 540.	1.4	1
8	Parallel Manipulation and Flexible Assembly of Micro-Spiral via Optoelectronic Tweezers. Frontiers in Bioengineering and Biotechnology, 2022, 10, 868821.	2.0	3
9	Magnetically Actuated Cellâ€Robot System: Precise Control, Manipulation, and Multimode Conversion (Small 15/2022). Small, 2022, 18, .	5.2	1
10	Bioinspired Functional Surfaces for Medical Devices. Chinese Journal of Mechanical Engineering (English Edition), 2022, 35, .	1.9	6
11	High-Efficient Fog Harvest from a Synergistic Effect of Coupling Hierarchical Structures. ACS Applied Materials & Interfaces, 2022, 14, 33993-34001.	4.0	19
12	Applications of bioinspired approaches and challenges in medical devices. Bio-Design and Manufacturing, 2021, 4, 146-148.	3.9	15
13	Bioinspired Unidirectional Liquid Transport Micro-nano Structures: A Review. Journal of Bionic Engineering, 2021, 18, 1-29.	2.7	22
14	Role of glucose in the repair of cell membrane damage during squeeze distortion of erythrocytes in microfluidic capillaries. Lab on A Chip, 2021, 21, 896-903.	3.1	2
15	Reduction of Erythrocyte Fluid Adaptability Due to Cell Membrane Hardening Based on Single-Cell Analysis. Biochip Journal, 2021, 15, 90-99.	2.5	1
16	<scp>Dualâ€composite dragâ€reduction</scp> surface based on the multilayered structure and mechanical properties of tuna skin. Microscopy Research and Technique, 2021, 84, 1862-1872.	1.2	14
17	An Underwater Flow Sensor Inspired by Air-Retaining Hairs of Notonecta. , 2021, , .		0
18	Air Bubble Bridgeâ€Based Bioinspired Underwater Adhesion. Small, 2021, 17, e2103423.	5.2	15

Huawei Chen

#	Article	IF	CITATIONS
19	Highly Efficient Multiscale Fog Collector Inspired by Sarracenia Trichome Hierarchical Structure. Global Challenges, 2021, 5, 2100087.	1.8	14
20	Precise Control of Customized Macrophage Cell Robot for Targeted Therapy of Solid Tumors with Minimal Invasion. Small, 2021, 17, e2103986.	5.2	38
21	Interaction between positive and negative dielectric microparticles/microorganism in optoelectronic tweezers. Lab on A Chip, 2021, 21, 4379-4389.	3.1	13
22	Air Bubble Bridgeâ€Based Bioinspired Underwater Adhesion (Small 42/2021). Small, 2021, 17, 2170221.	5.2	2
23	Self-Assembly of Self-Cleaning Polystyrene/Styrene-Butadiene-Styrene Films with Well-Ordered Micro-Structures. Coatings, 2020, 10, 1133.	1.2	2
24	High-Sensitivity Wearable and Flexible Humidity Sensor Based on Graphene Oxide/Non-Woven Fabric for Respiration Monitoring. Langmuir, 2020, 36, 9443-9448.	1.6	110
25	Micro–Nano Hierarchical Structure Enhanced Strong Wet Friction Surface Inspired by Tree Frogs. Advanced Science, 2020, 7, 2001125.	5.6	69
26	Surface-Tension-Confined Channel with Biomimetic Microstructures for Unidirectional Liquid Spreading. Micromachines, 2020, 11, 978.	1.4	2
27	Biomineralization Forming Process and Bio-inspired Nanomaterials for Biomedical Application: A Review. Minerals (Basel, Switzerland), 2019, 9, 68.	0.8	70
28	The prey capture mechanism of micro structure on the Sarracenia Judith Hindle inner surface. Journal of Bionic Engineering, 2018, 15, 34-41.	2.7	6
29	Self-Lubricanting Slippery Surface with Wettability Gradients for Anti-Sticking of Electrosurgical Scalpel. Micromachines, 2018, 9, 591.	1.4	11
30	Liquid-Infused Surfaces on Electrosurgical Instruments with Exceptional Antiadhesion and Low-Damage Performances. ACS Applied Materials & Interfaces, 2018, 10, 33713-33720.	4.0	30
31	Ultrafast water harvesting and transport in hierarchical microchannels. Nature Materials, 2018, 17, 935-942.	13.3	320
32	Aligned P(VDF-TrFE) Nanofibers for Enhanced Piezoelectric Directional Strain Sensing. Polymers, 2018, 10, 364.	2.0	49
33	Bioâ€inspired drag reduction surface from sharkskin. Biosurface and Biotribology, 2018, 4, 39-45.	0.6	29
34	Bioinspired Smart Peristome Surface for Temperature-Controlled Unidirectional Water Spreading. ACS Applied Materials & Interfaces, 2017, 9, 5645-5652.	4.0	60
35	Uni-directional liquid spreading control on a bio-inspired surface from the peristome of Nepenthes alata. Journal of Materials Chemistry A, 2017, 5, 6914-6920.	5.2	62
36	Surfaces Inspired by the <i>Nepenthes</i> Peristome for Unidirectional Liquid Transport. Advanced Materials, 2017, 29, 1702995.	11.1	93

HUAWEI CHEN

#	Article	IF	CITATIONS
37	Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces. Scientific Reports, 2017, 7, 14722.	1.6	14
38	A Novel Bioinspired Continuous Unidirectional Liquid Spreading Surface Structure from the Peristome Surface of <i>Nepenthes alata</i> . Small, 2017, 13, 1601676.	5.2	94
39	Stable slippery liquid-infused anti-wetting surface at high temperatures. Journal of Materials Chemistry A, 2016, 4, 12212-12220.	5.2	60
40	Titelbild: Uni-Directional Transportation on Peristome-Mimetic Surfaces for Completely Wetting Liquids (Angew. Chem. 48/2016). Angewandte Chemie, 2016, 128, 15097-15097.	1.6	2
41	Breath figure patterns prepared by spraying ultrasonic atomized water droplets. , 2016, , .		0
42	Continuous directional water transport on the peristome surface of Nepenthes alata. Nature, 2016, 532, 85-89.	13.7	834
43	Large-Scale Fabrication of Biomimetic Drag-Reduction Surface via Bio-Replication of Shark Skin. , 2016, , 229-269.		0
44	Uniâ€Directional Transportation on Peristomeâ€Mimetic Surfaces for Completely Wetting Liquids. Angewandte Chemie, 2016, 128, 15212-15216.	1.6	5
45	Uniâ€Directional Transportation on Peristomeâ€Mimetic Surfaces for Completely Wetting Liquids. Angewandte Chemie - International Edition, 2016, 55, 14988-14992.	7.2	134
46	UV grafting process for synthetic drag reduction of biomimetic riblet surfaces. Journal of Applied Polymer Science, 2015, 132, .	1.3	5
47	Investigation of the Anisotropic Morphology-Induced Effects of the Slippery Zone in Pitchers of Nepenthes alata. Journal of Bionic Engineering, 2015, 12, 79-87.	2.7	22
48	Transparent self-cleaning lubricant-infused surfaces made with large-area breath figure patterns. Applied Surface Science, 2015, 355, 1083-1090.	3.1	62
49	Bioinspired Surface for Surgical Graspers Based on the Strong Wet Friction of Tree Frog Toe Pads. ACS Applied Materials & Interfaces, 2015, 7, 13987-13995.	4.0	119
50	Preparation of multiâ€level honeycombâ€structured porous films by control of spraying atomized water droplets. Journal of Applied Polymer Science, 2014, 131, .	1.3	4
51	Flow over bio-inspired 3D herringbone wall riblets. Experiments in Fluids, 2014, 55, 1.	1.1	50
52	Investigation on large-area fabrication of vivid shark skin with superior surface functions. Applied Surface Science, 2014, 316, 124-131.	3.1	60
53	Synthetic Effect of Vivid Shark Skin and Polymer Additive on Drag Reduction Reinforcement. Advances in Mechanical Engineering, 2014, 6, 425701.	0.8	9
54	Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather. Journal of Bionic Engineering, 2013, 10, 341-349.	2.7	57

HUAWEI CHEN

		15	C
#	ARTICLE	IF	CITATIONS
55	Largeâ€scale equalâ€proportional amplification bioâ€replication of shark skin Based on solventâ€swelling PDMS. Journal of Applied Polymer Science, 2013, 130, 2383-2389.	1.3	18
56	Development of integrated precision vibration-assisted micro-engraving system. Transactions of Tianjin University, 2011, 17, 242-247.	3.3	5
57	A seamless coupling between molecular dynamics and material point method. Japan Journal of Industrial and Applied Mathematics, 2011, 28, 55-67.	0.5	1
58	Controllable Directional Liquid Transport in Open Channel. Advanced Materials Interfaces, 0, , 2102547.	1.9	6