Guillaume J Bilodeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8026743/publications.pdf

Version: 2024-02-01

60 papers

1,594 citations

304368 22 h-index 36 g-index

65 all docs

65
docs citations

65 times ranked 1583 citing authors

#	Article	IF	CITATIONS
1	Development of an Assay for Rapid Detection and Quantification of <i>Verticillium dahliae</i> in Soil. Phytopathology, 2012, 102, 331-343.	1.1	154
2	Standardizing the Nomenclature for Clonal Lineages of the Sudden Oak Death Pathogen, <i>Phytophthora ramorum</i> . Phytopathology, 2009, 99, 792-795.	1.1	93
3	Molecular Detection of Phytophthora ramorum by Real-Time Polymerase Chain Reaction Using TaqMan, SYBR Green, and Molecular Beacons. Phytopathology, 2007, 97, 632-642.	1.1	89
4	Development of a Multiplex Assay for Genus- and Species-Specific Detection of <i>Phytophthora</i> Based on Differences in Mitochondrial Gene Order. Phytopathology, 2014, 104, 733-748.	1.1	76
5	Honey bees as biomonitors of environmental contaminants, pathogens, and climate change. Ecological Indicators, 2022, 134, 108457.	2.6	63
6	A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants. Science of the Total Environment, 2017, 601-602, 1306-1314.	3.9	57
7	Identification and characterization of Colletotrichum species causing apple bitter rot in New York and description of C. noveboracense sp. nov Scientific Reports, 2020, 10, 11043.	1.6	55
8	Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols. Peerl, 2020, 8, e8523.	0.9	54
9	Molecular Detection of 10 of the Most Unwanted Alien Forest Pathogens in Canada Using Real-Time PCR. PLoS ONE, 2015, 10, e0134265.	1.1	51
10	Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen $\langle i \rangle$ Phytophthora ramorum $\langle i \rangle$. MBio, 2019, 10, .	1.8	50
11	Development of Real-Time Isothermal Amplification Assays for On-Site Detection of <i>Phytophthora infestans</i> in Potato Leaves. Plant Disease, 2017, 101, 1269-1277.	0.7	48
12	Bioaerosol Sampler Choice Should Consider Efficiency and Ability of Samplers To Cover Microbial Diversity. Applied and Environmental Microbiology, 2018, 84, .	1.4	47
13	Systematic Development of <i>Phytophthora</i> Species-Specific Mitochondrial Diagnostic Markers for Economically Important Members of the Genus. Plant Disease, 2017, 101, 1162-1170.	0.7	40
14	Fungal aerosols at dairy farms using molecular and culture techniques. Science of the Total Environment, 2019, 653, 253-263.	3.9	37
15	Evaluation of Molecular Markers for <i>Phytophthora ramorum</i> Detection and Identification: Testing for Specificity Using a Standardized Library of Isolates. Phytopathology, 2009, 99, 390-403.	1.1	36
16	Advances in Diagnostics of Downy Mildews: Lessons Learned from Other Oomycetes and Future Challenges. Plant Disease, 2018, 102, 265-275.	0.7	36
17	Metaxa2 Database Builder: enabling taxonomic identification from metagenomic or metabarcoding data using any genetic marker. Bioinformatics, 2018, 34, 4027-4033.	1.8	36
18	Biosurveillance of forest insects: part lâ€"integration and application of genomic tools to the surveillance of non-native forest insects. Journal of Pest Science, 2019, 92, 51-70.	1.9	35

#	Article	IF	CITATIONS
19	Screening for Exotic Forest Pathogens to Increase Survey Capacity Using Metagenomics. Phytopathology, 2018, 108, 1509-1521.	1.1	30
20	Genome sequences of six Phytophthora species threatening forest ecosystems. Genomics Data, 2016, 10, 85-88.	1.3	29
21	Multiplex real-time polymerase chain reaction (PCR) for detection of (i>Phytophthora ramorum (i), the causal agent of sudden oak death. Canadian Journal of Plant Pathology, 2009, 31, 195-210.	0.8	27
22	Highâ€resolution biomonitoring of plant pathogens and plant species using metabarcoding of pollen pellet contents collected from a honey bee hive. Environmental DNA, 2019, 1, 155-175.	3.1	27
23	The Ecobiomics project: Advancing metagenomics assessment of soil health and freshwater quality in Canada. Science of the Total Environment, 2020, 710, 135906.	3.9	25
24	Membrane-Based Oligonucleotide Array Developed from Multiple Markers for the Detection of Many Phytophthora Species. Phytopathology, 2013, 103, 43-54.	1.1	24
25	Genome-Enhanced Detection and Identification (GEDI) of plant pathogens. PeerJ, 2018, 6, e4392.	0.9	24
26	Recovery of Fungal Cells from Air Samples: a Tale of Loss and Gain. Applied and Environmental Microbiology, 2019, 85, .	1.4	21
27	Detection of (i>Diplodia corticola (i>spores in Ontario and Québec based on High Throughput Sequencing (HTS) methods. Canadian Journal of Plant Pathology, 2018, 40, 378-386.	0.8	20
28	Fungal bioaerosols in biomethanization facilities. Journal of the Air and Waste Management Association, 2018, 68, 1198-1210.	0.9	20
29	Biosurveillance of forest insects: part Il—adoption of genomic tools by end user communities and barriers to integration. Journal of Pest Science, 2019, 92, 71-82.	1.9	20
30	Anthropogenic signature in the incidence and distribution of an emerging pathogen of poplars. Biological Invasions, 2016, 18, 1147-1161.	1.2	17
31	In Situ Processing and Efficient Environmental Detection (iSPEED) of tree pests and pathogens using point-of-use real-time PCR. PLoS ONE, 2020, 15, e0226863.	1.1	17
32	Monitoring airborne inoculum for improved plant disease management. A review. Agronomy for Sustainable Development, 2021, 41, 1.	2.2	17
33	Integrated air stream micromixer for performing bioanalytical assays on a plastic chip. Lab on A Chip, 2014, 14, 3750.	3.1	16
34	Real-time PCR assay to distinguish <i>Phytophthora ramorum</i> lineages using the cellulose binding elicitor lectin (CBEL) locus. Canadian Journal of Plant Pathology, 2014, 36, 367-376.	0.8	16
35	Genome Analysis and Development of a Multiplex TaqMan Real-Time PCR for Specific Identification and Detection of <i>Clavibacter michiganensis</i> subsp. <i>nebraskensis</i> . Phytopathology, 2016, 106, 1473-1485.	1.1	16
36	Separation and concentration of Phytophthora ramorum sporangia by inertial focusing in curving microfluidic flows. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	15

#	Article	IF	Citations
37	Improved detection and identification of the sudden oak death pathogen <i>Phytophthora ramorum</i> and the Port Orford cedar root pathogen <i>Phytophthora lateralis</i> Plant Pathology, 2019, 68, 878-888.	1.2	14
38	Validation of a Preformulated, Field Deployable, Recombinase Polymerase Amplification Assay for Phytophthora Species. Plants, 2020, 9, 466.	1.6	14
39	Detection of cranberry fruit rot fungi using DNA array hybridization. Canadian Journal of Plant Pathology, 2008, 30, 226-240.	0.8	13
40	Development of Polymorphic Microsatellite Loci for Potato Wart from Next-Generation Sequence Data. Phytopathology, 2016, 106, 636-644.	1.1	13
41	Draft Genome Sequence of Clavibacter michiganensis subsp. <i>nebraskensis</i> Strain DOAB 397, Isolated from an Infected Field Corn Plant in Manitoba, Canada. Genome Announcements, 2015, 3, .	0.8	12
42	Development and Validation of Polymorphic Microsatellite Loci for the NA2 Lineage of <i>Phytophthora ramorum</i> from Whole Genome Sequence Data. Plant Disease, 2017, 101, 666-673.	0.7	12
43	High-Throughput Sequencing to Investigate Phytopathogenic Fungal Propagules Caught in Baited Insect Traps. Journal of Fungi (Basel, Switzerland), 2019, 5, 15.	1.5	12
44	Monitoring of <i>Peronospora destructor</i> Primary and Secondary Inoculum by Real-Time qPCR. Plant Disease, 2020, 104, 3183-3191.	0.7	9
45	In Silico Study Suggesting the Bias of Primers Choice in the Molecular Identification of Fungal Aerosols. Journal of Fungi (Basel, Switzerland), 2021, 7, 99.	1.5	9
46	Factors Influencing the Occurrence of Onion Downy Mildew (Peronospora destructor) Epidemics: Trends from 31 Years of Observational Data. Agronomy, 2020, 10, 738.	1.3	8
47	An Overview of Canadian Research Activities on Diseases Caused by <i>Phytophthora ramorum</i> Results, Progress, and Challenges. Plant Disease, 2018, 102, 1218-1233.	0.7	7
48	Realâ€time <scp>PCR</scp> identification of the ambrosia beetles, <i>Trypodendron domesticum</i> and <i>Trypodendron lineatum</i> (Olivier) (Coleoptera: Scolytidae). Journal of Applied Entomology, 2016, 140, 299-307.	0.8	5
49	An Overview of Bioinformatics Tools for DNA Meta-Barcoding Analysis of Microbial Communities of Bioaerosols: Digest for Microbiologists. Life, 2020, 10, 185.	1.1	4
50	Whole Genome Sequencing Resource of the European Larch Canker Pathogen <i>Lachnellula willkommii</i> for Molecular Diagnostic Marker Development. Phytopathology, 2020, 110, 1255-1259.	1.1	4
51	Genotyping by sequencing suggests overwintering of <i>Peronospora destructor</i> in southwestern Québec, Canada. Molecular Plant Pathology, 2022, 23, 339-354.	2.0	4
52	Genomic biosurveillance detects a sexual hybrid in the sudden oak death pathogen. Communications Biology, 2022, 5, 477.	2.0	4
53	Identification of the Dominant Genotypes of <i>Phytophthora infestans</i> in Canada Using Real-Time PCR with ASO-PCR Assays. Plant Disease, 2016, 100, 1482-1491.	0.7	2
54	Four In Silico Designed and Validated qPCR Assays to Detect and Discriminate TilletiaÂindica and T. walkeri, Individually or as a Complex. Biology, 2021, 10, 1295.	1.3	2

#	Article	IF	CITATIONS
55	An amplicon-based sequencing approach for the study of aeromycology. Journal of Xenobiotics, 2018, 8, 7810.	2.9	1
56	Title is missing!. , 2020, 15, e0226863.		0
57	Title is missing!. , 2020, 15, e0226863.		O
58	Title is missing!. , 2020, 15, e0226863.		0
59	Title is missing!. , 2020, 15, e0226863.		0
60	Title is missing!. , 2020, 15, e0226863.		0