Lisa Nivison-Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/802626/publications.pdf

Version: 2024-02-01

		471061	377514
50	1,370	17	34
papers	citations	h-index	g-index
51	51	51	1813
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nature Biotechnology, 2010, 28, 1123-1128.	9.4	244
2	Elastin-based materials. Chemical Society Reviews, 2010, 39, 3371.	18.7	214
3	Synthetic human elastin microfibers: Stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. Acta Biomaterialia, 2010, 6, 354-359.	4.1	110
4	Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers. Journal of Biomedical Materials Research - Part A, 2012, 100A, 155-161.	2.1	47
5	Fundus Autofluorescence in Age-related Macular Degeneration. Optometry and Vision Science, 2017, 94, 246-259.	0.6	41
6	In Vivo Quantification of Retinal Changes Associated With Drusen in Age-Related Macular Degeneration. Investigative Ophthalmology and Visual Science, 2015, 56, 1689-1700.	3.3	40
7	Infrared reflectance imaging in ageâ€related macular degeneration. Ophthalmic and Physiological Optics, 2016, 36, 303-316.	1.0	37
8	Vascular Changes in Intermediate Age-Related Macular Degeneration Quantified Using Optical Coherence Tomography Angiography. Translational Vision Science and Technology, 2019, 8, 20.	1.1	37
9	Pattern Recognition Analysis of Age-Related Retinal Ganglion Cell Signatures in the Human Eye. , 2017, 58, 3086.		34
10	Development of a Spatial Model of Age-Related Change in the Macular Ganglion Cell Layer to Predict Function From Structural Changes. American Journal of Ophthalmology, 2019, 208, 166-177.	1.7	33
11	Pattern Recognition Analysis Reveals Unique Contrast Sensitivity Isocontours Using Static Perimetry Thresholds Across the Visual Field., 2017, 58, 4863.		32
12	Retinal amino acid neurochemistry in health and disease. Australasian journal of optometry, The, 2013, 96, 310-332.	0.6	30
13	Early remodeling of mÃ $\frac{1}{4}$ ller cells in the <i>rd/rd</i> mouse model of retinal dystrophy. Journal of Comparative Neurology, 2013, 521, 2439-2453.	0.9	30
14	Age-Related Macular Degeneration. Optometry and Vision Science, 2014, 91, 832-848.	0.6	28
15	Sildenafil alters retinal function in mouse carriers of Retinitis Pigmentosa. Experimental Eye Research, 2014, 128, 43-56.	1.2	25
16	Determining Spatial Summation and Its Effect on Contrast Sensitivity across the Central 20 Degrees of Visual Field. PLoS ONE, 2016, 11, e0158263.	1.1	23
17	Normal aging changes in the choroidal angioarchitecture of the macula. Scientific Reports, 2020, 10, 10810.	1.6	21
18	Mapping cation entry in photoreceptors and inner retinal neurons during early degeneration in the P23H-3 rat retina. Visual Neuroscience, 2013, 30, 65-75.	0.5	20

#	Article	IF	Citations
19	Collaborative care of nonâ€urgent macular disease: a study of interâ€optometric referrals. Ophthalmic and Physiological Optics, 2016, 36, 632-642.	1.0	19
20	Mapping kainate activation of inner neurons in the rat retina. Journal of Comparative Neurology, 2013, 521, 2416-2438.	0.9	17
21	Vinpocetine regulates cation channel permeability of inner retinal neurons in the ischaemic retina. Neurochemistry International, 2014, 66, 1-14.	1.9	16
22	Advanced imaging for the diagnosis of ageâ€related macular degeneration: a case vignettes study. Australasian journal of optometry, The, 2018, 101, 243-254.	0.6	16
23	Macromolecular markers in normal human retina and applications to human retinal disease. Experimental Eye Research, 2016, 150, 135-148.	1.2	14
24	Developing prognostic biomarkers in intermediate ageâ€related macular degeneration: their clinical use in predicting progression. Australasian journal of optometry, The, 2018, 101, 172-181.	0.6	14
25	Modelling normal age-related changes in individual retinal layers using location-specific OCT analysis. Scientific Reports, 2021, $11,558$.	1.6	14
26	Vinpocetine modulates metabolic activity and function during retinal ischemia. American Journal of Physiology - Cell Physiology, 2015, 308, C737-C749.	2.1	13
27	Retinal Thickness Changes throughout the Natural History of Drusen in Age-related Macular Degeneration. Optometry and Vision Science, 2018, 95, 648-655.	0.6	13
28	Contrast sensitivity isocontours of the central visual field. Scientific Reports, 2019, 9, 11603.	1.6	13
29	Macula Ganglion Cell Thickness Changes Display Location-Specific Variation Patterns in Intermediate Age-Related Macular Degeneration., 2020, 61, 2.		13
30	Retinal Amino Acid Neurochemistry of the Southern Hemisphere Lamprey, Geotria australis. PLoS ONE, 2013, 8, e58406.	1.1	12
31	Pre-treatment with vinpocetine protects against retinal ischemia. Experimental Eye Research, 2017, 154, 126-138.	1.2	12
32	Radial Peripapillary Capillary Plexus Sparing and Underlying Retinal Vascular Impairment in Intermediate Age-Related Macular Degeneration., 2021, 62, 2.		12
33	Metabolic profiling of the mouse retina using amino acid signatures: Insight into developmental cell dispersion patterns. Experimental Neurology, 2013, 250, 74-93.	2.0	11
34	Selfâ€reported optometric practise patterns in ageâ€related macular degeneration. Australasian journal of optometry, The, 2017, 100, 718-728.	0.6	11
35	High-Density Optical Coherence Tomography Analysis Provides Insights Into Early/Intermediate Age-Related Macular Degeneration Retinal Layer Changes. , 2022, 63, 36.		10
36	Amino acid signatures in the developing mouse retina. International Journal of Developmental Neuroscience, 2014, 33, 62-80.	0.7	9

#	Article	IF	CITATIONS
37	Pigmented Lesions of the Retinal Pigment Epithelium. Optometry and Vision Science, 2015, 92, 844-857.	0.6	9
38	The advantages of intermediateâ€tier, interâ€optometric referral of low risk pigmented lesions. Ophthalmic and Physiological Optics, 2017, 37, 661-668.	1.0	9
39	Location-Specific Thickness Patterns in Intermediate Age-Related Macular Degeneration Reveals Anatomical Differences in Multiple Retinal Layers. , 2021, 62, 13.		9
40	Elastin Based Constructs., 0,,.		8
41	Peripheral retinal findings in populations with macular disease are similar to healthy eyes. Ophthalmic and Physiological Optics, 2018, 38, 584-595.	1.0	8
42	OCT and Fundus Autofluorescence Enhances Visualization of White Dot Syndromes. Optometry and Vision Science, 2015, 92, 642-653.	0.6	7
43	Atypical Features of Fuchs Uveitis Syndrome. Optometry and Vision Science, 2015, 92, e394-e403.	0.6	7
44	Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia. Experimental Eye Research, 2018, 167, 1-13.	1.2	7
45	Multispectral Pattern Recognition Reveals a Diversity of Clinical Signs in Intermediate Age-Related Macular Degeneration. , 2018, 59, 1790.		7
46	Classifying Retinal Degeneration in Histological Sections Using Deep Learning. Translational Vision Science and Technology, 2021, 10, 9.	1.1	4
47	Visualisation of peripheral retinal degenerations and anomalies with ocular imaging. Seminars in Ophthalmology, 2022, 37, 554-582.	0.8	4
48	Should clinical automated perimetry be considered for routine functional assessment of early/intermediate ageâ€related macular degeneration (AMD)? A systematic review of current literature. Ophthalmic and Physiological Optics, 2022, 42, 161-177.	1.0	3
49	Ocular ischaemia: signs, symptoms, and clinical considerations for primary eye care practitioners. Australasian journal of optometry, The, 2022, 105, 117-134.	0.6	2
50	Multispectral pattern recognition measures change in drusen area in age-related macular degeneration with high congruency to expert graders. Scientific Reports, 2022, 12, 7442.	1.6	1