
Gustav Akk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/802570/publications.pdf Version: 2024-02-01

CHISTAN AKK

#	Article	IF	CITATIONS
1	Neurosteroid Access to the GABAA Receptor. Journal of Neuroscience, 2005, 25, 11605-11613.	3.6	144
2	Mechanisms of neurosteroid interactions with GABAA receptors. , 2007, 116, 35-57.		136
3	Pregnenolone sulfate block of GABA A receptors: mechanism and involvement of a residue in the M2 region of the α subunit. Journal of Physiology, 2001, 532, 673-684.	2.9	121
4	Mutations of the GABA-A Receptor α1 Subunit M1 Domain Reveal Unexpected Complexity for Modulation by Neuroactive Steroids. Molecular Pharmacology, 2008, 74, 614-627.	2.3	82
5	Neuroactive steroids have multiple actions to potentiate GABAAreceptors. Journal of Physiology, 2004, 558, 59-74.	2.9	76
6	Multiple functional neurosteroid binding sites on GABAA receptors. PLoS Biology, 2019, 17, e3000157.	5.6	76
7	Photoaffinity Labeling with a Neuroactive Steroid Analogue. Journal of Biological Chemistry, 2003, 278, 13196-13206.	3.4	70
8	Activation of GABAAreceptors containing the α4 subunit by GABA and pentobarbital. Journal of Physiology, 2004, 556, 387-399.	2.9	56
9	Activation and block of recombinant GABAA receptors by pentobarbitone: a single-channel study. British Journal of Pharmacology, 2000, 130, 249-258.	5.4	53
10	The influence of the membrane on neurosteroid actions at GABAA receptors. Psychoneuroendocrinology, 2009, 34, S59-S66.	2.7	44
11	Characteristics of concatemeric GABA _A receptors containing α4/δ subunits expressed in <i>Xenopus</i> oocytes. British Journal of Pharmacology, 2012, 165, 2228-2243.	5.4	43
12	Galantamine Activates Muscle-Type Nicotinic Acetylcholine Receptors without Binding to the Acetylcholine-Binding Site. Journal of Neuroscience, 2005, 25, 1992-2001.	3.6	42
13	Natural and Enantiomeric Etiocholanolone Interact with Distinct Sites on the Rat α1β2γ2L GABAA Receptor. Molecular Pharmacology, 2007, 71, 1582-1590.	2.3	41
14	Propofol Is an Allosteric Agonist with Multiple Binding Sites on Concatemeric Ternary GABA _A Receptors. Molecular Pharmacology, 2018, 93, 178-189.	2.3	41
15	Contributions of the nonâ€î± subunit residues (loop D) to agonist binding and channel gating in the muscle nicotinic acetylcholine receptor. Journal of Physiology, 2002, 544, 695-705.	2.9	38
16	Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol. Current Neuropharmacology, 2016, 14, 772-780.	2.9	37
17	<i>ì³</i> -Aminobutyric Acid Type A <i>α</i> 4, <i>î²</i> 2, and <i>î´</i> Subunits Assemble to Produce More Than One Functionally Distinct Receptor Type. Molecular Pharmacology, 2014, 86, 647-656.	2.3	35
18	Applying the Monod-Wyman-Changeux Allosteric Activation Model to Pseudo–Steady-State Responses from GABA _A Receptors. Molecular Pharmacology, 2019, 95, 106-119.	2.3	35

Gustav Ακκ

#	Article	IF	CITATIONS
19	Site-specific effects of neurosteroids on GABAA receptor activation and desensitization. ELife, 2020, 9, .	6.0	32
20	Aromatics at the murine nicotinic receptor agonist binding site: mutational analysis of the αY93 and αW149 residues. Journal of Physiology, 2001, 535, 729-740.	2.9	30
21	Low doses of ethanol and a neuroactive steroid positively interact to modulate rat GABA A receptor function. Journal of Physiology, 2003, 546, 641-646.	2.9	30
22	GABA Type A Receptor Activation in the Allosteric Coagonist Model Framework: Relationship between EC ₅₀ and Basal Activity. Molecular Pharmacology, 2018, 93, 90-100.	2.3	29
23	Activation and block of mouse muscle-type nicotinic receptors by tetraethylammonium. Journal of Physiology, 2003, 551, 155-168.	2.9	29
24	The Actions of Drug Combinations on the GABA _A Receptor Manifest as Curvilinear Isoboles of Additivity. Molecular Pharmacology, 2017, 92, 556-563.	2.3	28
25	Mapping two neurosteroid-modulatory sites in the prototypic pentameric ligand-gated ion channel GLIC. Journal of Biological Chemistry, 2018, 293, 3013-3027.	3.4	28
26	Occupation of Either Site for the Neurosteroid Allopregnanolone Potentiates the Opening of the GABA _A Receptor Induced from Either Transmitter Binding Site. Molecular Pharmacology, 2011, 80, 79-86.	2.3	27
27	Enhanced GABAergic actions resulting from the coapplication of the steroid 3α-hydroxy-5α-pregnane-11,20-dione (alfaxalone) with propofol or diazepam. Scientific Reports, 2018, 8, 10341.	3.3	26
28	Analysis of GABA _A Receptor Activation by Combinations of Agonists Acting at the Same or Distinct Binding Sites. Molecular Pharmacology, 2019, 95, 70-81.	2.3	26
29	Structural elements near the Câ€ŧerminus are responsible for changes in nicotinic receptor gating kinetics following patch excision. Journal of Physiology, 2000, 527, 405-417.	2.9	23
30	Kinetic and Structural Determinants for GABA-A Receptor Potentiation by Neuroactive Steroids. Current Neuropharmacology, 2010, 8, 18-25.	2.9	21
31	Chemogenetic Isolation Reveals Synaptic Contribution of δGABA _A Receptors in Mouse Dentate Granule Neurons. Journal of Neuroscience, 2018, 38, 8128-8145.	3.6	21
32	Mutational Analysis of the Putative High-Affinity Propofol Binding Site in Human <i>β</i> 3 Homomeric GABA _A Receptors. Molecular Pharmacology, 2015, 88, 736-745.	2.3	20
33	Steady-State Activation and Modulation of the Concatemeric <i>α</i> 1 <i>β</i> 2 <i>γ</i> 2L GABA _A Receptor. Molecular Pharmacology, 2019, 96, 320-329.	2.3	20
34	Hydrogen bonding between the 17βâ€substituent of a neurosteroid and the GABA _A receptor is not obligatory for channel potentiation. British Journal of Pharmacology, 2009, 158, 1322-1329.	5.4	19
35	Activation and modulation of recombinant glycine and GABA _A receptors by 4â€halogenated analogues of propofol. British Journal of Pharmacology, 2016, 173, 3110-3120.	5.4	19
36	Steadyâ€state activation and modulation of the synapticâ€type <i>α</i> 1 <i>β</i> 2 <i>γ</i> 2L GABA _A receptor by combinations of physiological and clinical ligands. Physiological Reports, 2019, 7, e14230.	1.7	17

Gustav Ακκ

#	Article	IF	CITATIONS
37	Ethanol Modulates the Interaction of the Endogenous Neurosteroid Allopregnanolone with the α1β2γ2L GABAA Receptor. Molecular Pharmacology, 2007, 71, 461-472.	2.3	16
38	Pharmacology of structural changes at the GABA _A receptor transmitter binding site. British Journal of Pharmacology, 2011, 162, 840-850.	5.4	15
39	Synaptic-Type α1β2γ2L GABAA Receptors Produce Large Persistent Currents in the Presence of Ambient GABA and Anesthetic Drugs. Molecular Pharmacology, 2015, 87, 776-781.	2.3	15
40	The molecular determinants of neurosteroid binding in the GABA(A) receptor. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105383.	2.5	14
41	Activation of heteroliganded mouse muscle nicotinic receptors. Journal of Physiology, 2005, 564, 359-376.	2.9	13
42	Structural Studies of the Actions of Anesthetic Drugs on the Î ³ -Aminobutyric Acid Type A Receptor. Anesthesiology, 2011, 115, 1338-1348.	2.5	13
43	Activation and Modulation of Concatemeric GABA-A Receptors Expressed in Human Embryonic Kidney Cells. Molecular Pharmacology, 2009, 75, 1400-1411.	2.3	12
44	11-trifluoromethyl-phenyldiazirinyl neurosteroid analogues: potent general anesthetics and photolabeling reagents for GABAA receptors. Psychopharmacology, 2014, 231, 3479-3491.	3.1	12
45	Modulation of the human 🖥 GABAA receptor by inhibitory steroids. Psychopharmacology, 2014, 231, 3467-3478.	3.1	10
46	Mutations in the Main Cytoplasmic Loop of the GABAA Receptor α4 and δ Subunits Have Opposite Effects on Surface Expression. Molecular Pharmacology, 2014, 86, 20-27.	2.3	10
47	Steady-state activation of the high-affinity isoform of the α4β2δGABAA receptor. Scientific Reports, 2019, 9, 15997.	3.3	10
48	Intrasubunit and intersubunit steroid binding sites independently and additively mediate α1β2γ2L GABA _A receptor potentiation by the endogenous neurosteroid allopregnanolone. Molecular Pharmacology, 2021, 100, MOLPHARM-AR-2021-000268.	2.3	10
49	Application of the Co-Agonist Concerted Transition Model to Analysis of GABAA Receptor Properties. Current Neuropharmacology, 2019, 17, 843-851.	2.9	9
50	The Sulfated Steroids Pregnenolone Sulfate and Dehydroepiandrosterone Sulfate Inhibit the <i>α</i> 1 <i>β</i> 3 <i>3</i> 2L GABA _A Receptor by Stabilizing a Novel Nonconducting State. Molecular Pharmacology, 2022, 101, 68-77.	2.3	9
51	Enhancement of muscimol binding and gating by allosteric modulators of the GABAA receptor: relating occupancy to state functions. Molecular Pharmacology, 2020, 98, MOLPHARM-AR-2020-000066.	2.3	8
52	Comparison of Steroid Modulation of Spontaneous Inhibitory Postsynaptic Currents in Cultured Hippocampal Neurons and Steady-State Single-Channel Currents from Heterologously Expressed <i>أ±</i> 1 <i>1²</i> 22232	2.3	7
53	Enhancement of Muscimol Binding and Gating by Allosteric Modulators of the GABA _A Receptor: Relating Occupancy to State Functions. Molecular Pharmacology, 2020, 98, 303-313.	2.3	6
54	High Constitutive Activity Accounts for the Combination of Enhanced Direct Activation and Reduced Potentiation in Mutated GABAA Receptors. Molecular Pharmacology, 2018, 93, 468-476.	2.3	5

Gustav Ακκ

#	Article	IF	CITATIONS
55	The E Loop of the Transmitter Binding Site Is a Key Determinant of the Modulatory Effects of Physostigmine on Neuronal Nicotinic <i>α</i> 4 <i>β</i> 2 Receptors. Molecular Pharmacology, 2017, 91, 100-109.	2.3	4
56	Mild chronic perturbation of inhibition severely alters hippocampal function. Scientific Reports, 2019, 9, 16431.	3.3	4
57	Perspective on the relationship between GABAA receptor activity and the apparent potency of an inhibitor. Current Neuropharmacology, 2021, 19, .	2.9	4
58	Assessing potentiation of the (α4)3(β2)2 nicotinic acetylcholine receptor by the allosteric agonist CMPI. Journal of Biological Chemistry, 2022, 298, 101455.	3.4	4
59	Energetic Contributions to Channel Gating of Residues in the Muscle Nicotinic Receptor β1 Subunit. PLoS ONE, 2013, 8, e78539.	2.5	3
60	Reduced Activation of the Synaptic-Type GABA _A Receptor Following Prolonged Exposure to Low Concentrations of Agonists: Relationship between Tonic Activity and Desensitization. Molecular Pharmacology, 2020, 98, 762-769.	2.3	2
61	Analysis of Modulation of the 🖥 GABAA Receptor by Combinations of Inhibitory and Potentiating Neurosteroids Reveals Shared and Distinct Binding Sites. Molecular Pharmacology, 2020, 98, 280-291.	2.3	2
62	Neurosteroid Modulation of GABA _A Receptor Function by Independent Action at Multiple Specific Binding Sites. Current Neuropharmacology, 2022, 20, 886-890.	2.9	2
63	(+)-Catharanthine potentiates the GABAA receptor by binding to a transmembrane site at the β(+)/α(-) interface near the TM2-TM3 loop. Biochemical Pharmacology, 2022, 199, 114993.	4.4	2
64	Activation of the Rat α1β2Îμ GABAA Receptor by Orthosteric and Allosteric Agonists. Biomolecules, 2022, 12, 868.	4.0	2
65	Introduced Amino Terminal Epitopes Can Reduce Surface Expression of Neuronal Nicotinic Receptors. PLoS ONE, 2016, 11, e0151071.	2.5	1
66	Activation of the $\hat{l}\pm 1\hat{l}^2 2\hat{l}^3 2L$ GABAA Receptor by Physiological Agonists. Biomolecules, 2021, 11, 1864.	4.0	0