
Zahra Gholami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8024837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of Light Olefins via Fischer-Tropsch Process Using Iron-Based Catalysts: A Review. Catalysts, 2022, 12, 174.	1.6	18
2	Nickel ion removal from aqueous solutions through the adsorption process: a review. Reviews in Chemical Engineering, 2021, 37, 755-778.	2.3	30
3	Recent advances in Fischer-Tropsch synthesis using cobalt-based catalysts: a review on supports, promoters, and reactors. Catalysis Reviews - Science and Engineering, 2021, 63, 512-595.	5.7	91
4	Recent advances in selective catalytic reduction of NO _x by carbon monoxide for flue gas cleaning process: a review. Catalysis Reviews - Science and Engineering, 2021, 63, 68-119.	5.7	68
5	Rendering Fat and Heavy Fischer-Tropsch Waxes Mixtures (0–100%) Fast Pyrolysis Tests for the Production of Ethylene and Propylene. Processes, 2021, 9, 367.	1.3	1
6	A Review on Production of Light Olefins via Fluid Catalytic Cracking. Energies, 2021, 14, 1089.	1.6	45
7	Catalysts for Oxygen Reduction Reaction in the Polymer Electrolyte Membrane Fuel Cells: A Brief Review. Electrochem, 2021, 2, 590-603.	1.7	3
8	Hydrocracking of Heavy Fischer–Tropsch Wax Distillation Residues and Its Blends with Vacuum Gas Oil Using Phonolite-Based Catalysts. Molecules, 2021, 26, 7172.	1.7	6
9	A Review on the Production of Light Olefins Using Steam Cracking of Hydrocarbons. Energies, 2021, 14, 8190.	1.6	35
10	The influence of support composition on the activity of Cu:Ce catalysts for selective catalytic reduction of NO by CO in the presence of excess oxygen. New Journal of Chemistry, 2020, 44, 709-718.	1.4	16
11	Solvent-Free Synthesis of Jasminaldehyde in a Fixed-Bed Flow Reactor over Mg-Al Mixed Oxide. Catalysts, 2020, 10, 1033.	1.6	7
12	Promotional Effect of Manganese on Selective Catalytic Reduction of NO by CO in the Presence of Excess O2 over M@La–Fe/AC (M = Mn, Ce) Catalyst. Catalysts, 2020, 10, 1322.	1.6	8
13	CoMn Catalysts Derived from Hydrotalcite-Like Precursors for Direct Conversion of Syngas to Fuel Range Hydrocarbons. Catalysts, 2020, 10, 813.	1.6	3
14	Effective Adsorption of Reactive Black 5 onto Hybrid Hexadecylamine Impregnated Chitosan-Powdered Activated Carbon Beads. Water (Switzerland), 2020, 12, 2242.	1.2	25
15	Surface Characterization of Carbonaceous Materials Using Inverse Gas Chromatography: A Review. Electrochem, 2020, 1, 367-387.	1.7	15
16	Technologies for the nitrogen oxides reduction from flue gas: A review. Science of the Total Environment, 2020, 714, 136712.	3.9	194
17	Low-Temperature Selective Catalytic Reduction of NO by CO in the Presence of O ₂ over Cu:Ce Catalysts Supported by Multiwalled Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2018, 57, 8871-8883.	1.8	58
18	Enhancing reactive blue 4 adsorption through chemical modification of chitosan with hexadecylamine and 3-aminopropyl triethoxysilane. Journal of Water Process Engineering, 2017, 15, 49-54.	2.6	21

ZAHRA GHOLAMI

#	Article	IF	CITATIONS
19	The influence of catalyst factors for sustainable production of hydrocarbons via Fischer-Tropsch synthesis. Reviews in Chemical Engineering, 2017, 33, .	2.3	19
20	Synthesis and characterization of niobium-promoted cobalt/iron catalysts supported on carbon nanotubes for the hydrogenation of carbon monoxide. Journal of Fuel Chemistry and Technology, 2016, 44, 815-821.	0.9	7
21	Optimization hydrogen production over visible light-driven titania-supported bimetallic photocatalyst from water photosplitting in tandem photoelectrochemical cell. Renewable Energy, 2016, 99, 960-970.	4.3	25
22	Comparison of preparation techniques for CoFeNb/CNTs catalyst. AIP Conference Proceedings, 2016, , .	0.3	0
23	Effect of ethanedioic acid functionalization on Ni/Al 2 O 3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: kinetics and Arrhenius parameters. Journal of Energy Chemistry, 2016, 25, 158-168.	7.1	25
24	Chitosan hydrogel beads impregnated with hexadecylamine for improved reactive blue 4 adsorption. Carbohydrate Polymers, 2016, 137, 139-146.	5.1	73
25	Selective Monolaurin Synthesis through Esterification of Glycerol Using Sulfated Zirconia-Loaded SBA-15 Catalyst. Chemical Engineering Communications, 2016, 203, 496-504.	1.5	21
26	Modified silica-based heterogeneous catalysts for etherification of glycerol. AIP Conference Proceedings, 2015, , .	0.3	1
27	Catalytic Etherification of Glycerol to Diglycerol Over Heterogeneous Calcium-Based Mixed-Oxide Catalyst: Reusability and Stability. Chemical Engineering Communications, 2015, 202, 1397-1405.	1.5	10
28	Potentiality of Palm Oil Biomass with Cow Dung for compost production. KSCE Journal of Civil Engineering, 2015, 19, 1994-1999.	0.9	7
29	A review on composting of oil palm biomass. Environment, Development and Sustainability, 2015, 17, 691-709.	2.7	37
30	Heterogeneously catalyzed etherification of glycerol to diglycerol over calcium–lanthanum oxide supported on MCM-41: A heterogeneous basic catalyst. Applied Catalysis A: General, 2014, 479, 76-86.	2.2	32
31	Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 2014, 113, 115-130.	5.1	844
32	Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products. Renewable and Sustainable Energy Reviews, 2014, 39, 327-341.	8.2	135
33	Oil Palm Biomass as an Adsorbent for Heavy Metals. Reviews of Environmental Contamination and Toxicology, 2014, 232, 61-88.	0.7	21
34	Glycerol etherification to polyglycerols using Ca1+xAl1â^'xLaxO3 composite catalysts in a solventless medium. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 117-122.	2.7	30
35	Selective Etherification of Glycerol over Heterogeneous Mixed Oxide Catalyst: Optimization of Reaction Parameters. Chemical Engineering and Science, 2013, 1, 79-86.	0.6	14