## Yosef Raichlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8024635/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Halogen detection with molecular laser induced fluorescence. Spectrochimica Acta, Part B: Atomic<br>Spectroscopy, 2020, 166, 105813.                                                                     | 1.5 | 12        |
| 2  | Laser-induced breakdown spectroscopy of BaF2-Tm3+. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 164, 105767.                                                                                  | 1.5 | 2         |
| 3  | Toward the Required Detection Limits for Volatile Organic Constituents in Marine Environments with<br>Infrared Evanescent Field Chemical Sensors. Sensors, 2019, 19, 3644.                               | 2.1 | 17        |
| 4  | Polarization of the laser induced plasma lasers. Optics Communications, 2019, 447, 51-54.                                                                                                                | 1.0 | 8         |
| 5  | Laser-induced breakdown spectroscopy of Br and I molecules with alkali-earth elements.<br>Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 157, 47-52.                                            | 1.5 | 15        |
| 6  | Third harmonic generation in double-pulse laser induced air plasma. Optics Communications, 2019, 443, 63-68.                                                                                             | 1.0 | 2         |
| 7  | Fiber-optic evanescent wave spectroscopy (FEWS) of crystals from a urine sample as a tool for evaluating the chemical composition of kidney stones. Analytical Methods, 2019, 11, 2404-2409.             | 1.3 | 4         |
| 8  | Imaging rare-earth elements in minerals by laser-induced plasma spectroscopy: Molecular emission and plasma-induced luminescence. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 151, 12-19.    | 1.5 | 34        |
| 9  | Fiber-optic middle infrared evanescent wave spectroscopy for early detection of melanoma. , 2019, , .                                                                                                    |     | 1         |
| 10 | Cascade generation in Al laser induced plasma. Optics Communications, 2018, 415, 127-129.                                                                                                                | 1.0 | 8         |
| 11 | Laser-induced time resolved luminescence of natural sylvite KCl. Journal of Luminescence, 2018, 195,<br>430-434.                                                                                         | 1.5 | 0         |
| 12 | Using Attenuated Total Reflection–Fourier Transform Infra-Red (ATR-FTIR) spectroscopy to distinguish<br>between melanoma cells with a different metastatic potential. Scientific Reports, 2017, 7, 4381. | 1.6 | 45        |
| 13 | Fourier transform infrared spectroscopy on external perturbations inducing secondary structure changes of hemoglobin. Analyst, The, 2016, 141, 6061-6067.                                                | 1.7 | 20        |
| 14 | High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water. Nature Protocols, 2016, 11, 377-386.                         | 5.5 | 85        |
| 15 | Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst, The, 2015, 140, 765-770.                                        | 1.7 | 128       |
| 16 | Flattened infrared fiber-optic sensors for the analysis of micrograms of insoluble solid particles in solution or in a dry state. Vibrational Spectroscopy, 2014, 73, 67-72.                             | 1.2 | 9         |
| 17 | Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor<br>Technology. Scientific Reports, 2013, 3, 2525.                                                          | 1.6 | 42        |
| 18 | Direct quantification of aromatic hydrocarbons in geochemical fluids with a mid-infrared attenuated total reflection sensor. Organic Geochemistry, 2013, 55, 63-71.                                      | 0.9 | 33        |

YOSEF RAICHLIN

| #  | Article                                                                                                                                                                                                                                      | IF                      | CITATIONS   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|
| 19 | Titelbild: IR-ATR Chemical Sensors Based on Planar Silver Halide Waveguides Coated with an Ethylene/Propylene Copolymer for Detection of Multiple Organic Contaminants in Water (Angew.) Tj ETQq1                                            | 1 0.78 <b>148</b> 14 rg | BD/Overloci |
| 20 | IRâ€ATR Chemical Sensors Based on Planar Silver Halide Waveguides Coated with an Ethylene/Propylene<br>Copolymer for Detection of Multiple Organic Contaminants in Water. Angewandte Chemie -<br>International Edition, 2013, 52, 2265-2268. | 7.2                     | 44          |
| 21 | Mid-Infrared Planar Silver Halide Waveguides with Integrated Grating Couplers. Applied Spectroscopy, 2013, 67, 1057-1063.                                                                                                                    | 1.2                     | 16          |
| 22 | Infrared spectroscopic monitoring of surface effects during gas hydrate formation in the presence of detergents. Chemical Engineering Science, 2011, 66, 5497-5503.                                                                          | 1.9                     | 11          |
| 23 | Optimization of Fiber-Optic Evanescent Wave Spectroscopy: A Monte Carlo Approach. Applied<br>Spectroscopy, 2009, 63, 1057-1061.                                                                                                              | 1.2                     | 7           |
| 24 | Fiber-Optic Evanescent Wave Spectroscopy in the Middle Infrared. Applied Spectroscopy, 2008, 62, 55A-72A.                                                                                                                                    | 1.2                     | 81          |
| 25 | The Investigation of Water Diffusion into Teflon Copolymer Revealed by Fiber-optic Evanescent Wave Spectroscopy. Journal of Physical Chemistry A, 2007, 111, 6131-6134.                                                                      | 1.1                     | 4           |
| 26 | Mid-Infrared Fiber-Optic Attenuated Total Reflection Spectroscopy of the Solid—Liquid Phase<br>Transition of Water. Applied Spectroscopy, 2005, 59, 460-466.                                                                                 | 1.2                     | 51          |
| 27 | Infrared fiber optic evanescent wave spectroscopy and its applications for the detection of toxic materials in water, in situ and in real time. , 2004, , .                                                                                  |                         | 2           |
| 28 | Infrared fiber optic evanescent wave spectroscopy: a new tool for the study of urinary calculi. , 2004, 5321, 51.                                                                                                                            |                         | 1           |
| 29 | Surface-Enhanced Infrared Absorption and Amplified Spectra on Planar Silver Halide Fiber. Journal of<br>Physical Chemistry B, 2004, 108, 12633-12636.                                                                                        | 1.2                     | 16          |
| 30 | Investigations of the Structure of Water Using Mid-IR Fiberoptic Evanescent Wave Spectroscopy.<br>Physical Review Letters, 2004, 93, 185703.                                                                                                 | 2.9                     | 39          |
| 31 | Infrared fiber optic spectroscopy: a novel tool for skin diagnosis. , 2004, 5321, 44.                                                                                                                                                        |                         | 3           |
| 32 | Direct Monitoring of Soil and Water Nitrate by FTIR Based FEWS or Membrane Systems. Environmental<br>Science & Technology, 2003, 37, 2807-2812.                                                                                              | 4.6                     | 43          |
| 33 | Evanescent-wave infrared spectroscopy with flattened fibers as sensing elements. Optics Letters, 2003, 28, 2297.                                                                                                                             | 1.7                     | 28          |
| 34 | Fiberoptic infrared spectroscopy: a novel tool for the analysis of urine and urinary salts in situ and in real time. Urology, 2003, 61, 231-235.                                                                                             | 0.5                     | 14          |
| 35 | <title>Infrared fiber optic evanescent wave spectroscopy for the study of diffusion in the human skin</title> . , 2002, , .                                                                                                                  |                         | 9           |
| 36 | <title>New applications of fiber-optic IR spectroscopy in urologic practice</title> . , 2002, , .                                                                                                                                            |                         | 4           |

 $<\!title>\!New applications of fiber-optic IR spectroscopy in urologic practice<\!/title>., 2002, , .$ 36