
Zehra AltuntaÅ Bayä±r

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8024491/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Synthesis and characterization of novel soluble octa-cationic phthalocyanines. Dyes and Pigments, 2005, 65, 235-242.	2.0	88
2	Unsymmetrical phthalocyanines with alkynyl substituents. Polyhedron, 2004, 23, 3155-3162.	1.0	69
3	Electrocatalytic oxygen reduction and hydrogen evolution reactions on phthalocyanine modified electrodes: Electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring. Electrochimica Acta, 2011, 56, 5513-5525.	2.6	64
4	Electrochemical properties of octakis(hydroxyethylthio)-substituted phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2000, 04, 689-697.	0.4	60
5	Synthesis of phthalocyanines with tridentate branched bulky and alkylthio groups. Dyes and Pigments, 2003, 59, 263-268.	2.0	48
6	Synthesis, electrochemical and spectroelectrochemical properties of novel phthalocyanine complexes of manganese, titanium and indium. Electrochimica Acta, 2014, 137, 602-615.	2.6	44
7	Dioxadiaza macrocycle-substituted phthalocyanines. Dyes and Pigments, 1999, 43, 77-81.	2.0	32
8	Phthalocyanines with rigid carboxylic acid containing pendant arms. Polyhedron, 2006, 25, 39-42.	1.0	31
9	Synthesis and Electrochemical and In Situ Spectroelectrochemical Characterization of Chloroindium(III) and Chloromanganese(III) Phthalocyanines Bearing 4â€{(4′â€Trifluoromethyl)phenoxy)phenoxy Substituents. Electroanalysis, 2012, 24, 338-348.	1.5	25
10	Synthesis and photophysics of new metallo phthalocyanine complexes with thiazole groups and their fluorescence quenching studies with benzoquinone. Synthetic Metals, 2013, 176, 11-17.	2.1	25
11	Carbazole-substituted metallo-phthalocyanines: Synthesis, electrochemical, and spectroelectrochemical properties. Synthetic Metals, 2016, 217, 94-101.	2.1	25
12	Metallo-phthalocyanines containing thiazole moieties: Synthesis, characterization, electrochemical and spectroelectrochemical properties and sensor applications. Journal of Electroanalytical Chemistry, 2019, 832, 254-265.	1.9	25
13	Synthesis, electrochemical and spectroelectrochemical properties of phthalocyanines having extended π-electrons conjugation. Electrochimica Acta, 2013, 89, 270-277.	2.6	24
14	Microwave-assisted synthesis of novel non-peripherally substituted metallophthalocyanines and their sensing behaviour for a broad range of Lewis bases. Dalton Transactions, 2015, 44, 10060-10068.	1.6	23
15	Metal-Containing Phthalocyanines Substituted with One Branched Bulky Moiety and Six Alkylthio Groups. Monatshefte FÃ1⁄4r Chemie, 2003, 134, 1027-1031.	0.9	22
16	Synthesis and photophysical properties of novel (trifluoromethyl)phenylethynyl-substituted metallophthalocyanines. Polyhedron, 2013, 62, 120-125.	1.0	22
17	Thiazole-substituted non-symmetrical metallophthalocyanines: synthesis, characterization, electrochemical and heavy metal ion sensing properties. New Journal of Chemistry, 2020, 44, 5201-5210.	1.4	22
18	Synthesis and Characterisation of Unsymmetrical Porphyrazines Containing Bis(hydroxyethylthio) Substituents. Monatshefte Für Chemie, 2003, 134, 1555-1560.	0.9	21

Zehra Altuntaş Bayır

#	Article	IF	CITATIONS
19	Sensing alcohol vapours with novel unsymmetrically substituted metallophthalocyanines. Dalton Transactions, 2019, 48, 9194-9204.	1.6	21
20	Synthesis and EPR studies of metallophthalocyanines containing four carbhexyloxybiphenyloxy substituents. Dyes and Pigments, 2007, 74, 636-641.	2.0	20
21	Synthesis and photophysical properties of novel unsymmetrical metal-free and metallophthalocyanines. Journal of Organometallic Chemistry, 2014, 750, 125-131.	0.8	20
22	Synthesis, photochemical and photophysical properties of zinc(II) and indium(III) phthalocyanines bearing fluoroalkynyl functionalized substituents. Polyhedron, 2015, 102, 649-656.	1.0	20
23	Electrochemical, spectroelectrochemical, and dielectric properties of metallophthalocyanines bearing redox active cobalt and manganese metal centres. Inorganica Chimica Acta, 2017, 459, 51-62.	1.2	20
24	Photosensitive field effect transistor based on metallo-phthalocyanines containing (4-pentylphenyl) ethynyl moieties. Synthetic Metals, 2021, 273, 116690.	2.1	20
25	Synthesis and Characterization of New Unsymmetrically Substituted Phthalocyanines. Monatshefte F¼r Chemie, 2000, 131, 0287-0292.	0.9	19
26	Electrochemical, In Situ Spectroelectrochemical, In Situ Electrocolorimetric and Electrocatalytic Characterization of Metallophthalocyanines Bearing Four Dioctylaminocarbonyl Biphenyloxy Substituents. Electroanalysis, 2010, 22, 310-319.	1.5	19
27	Synthesis and Characterization of Phthalocyanines Containing Four 11-Membered Triaza Macrocycles. Journal of Chemical Research Synopses, 1999, , 702-703.	0.3	17
28	Biological properties of hexadeca-substituted metal phthalocyanines bearing different functional groups. Journal of Inorganic Biochemistry, 2022, 234, 111888.	1.5	17
29	Synthesis and electronic absorption studies of novel (trifluoromethyl)phenoxy-substituted phthalocyanines. Monatshefte Für Chemie, 2012, 143, 437-442.	0.9	15
30	Synthesis, electrochemical and spectroelectrochemical properties of thiazole-substituted phthalocyanines. Synthetic Metals, 2015, 209, 361-368.	2.1	15
31	The synthesis and electrochemical behaviour of carbazole-substituted phthalocyanines. Journal of Solid State Electrochemistry, 2018, 22, 505-517.	1.2	15
32	The design and synthesis of metallophthalocyanine–gold nanoparticle hybrids as biological agents. New Journal of Chemistry, 2022, 46, 5374-5384.	1.4	15
33	Metallophthalocyanines bearing four 3-(pyrrol-1-yl)phenoxy units as photosensitizer for dye-sensitized solar cells. Dyes and Pigments, 2018, 156, 267-275.	2.0	14
34	Electrochemical, spectroelectrochemical characterization and electropolymerization of 2-(4-methyl-1,3-thiazol-5-yl)ethoxy-substituted manganese and indium phthalocyanines. Polyhedron, 2015, 99, 244-251.	1.0	12
35	Investigation of the photoconductive properties of thiophene substituted metallo-phthalocyanines. Dalton Transactions, 2020, 49, 9385-9392.	1.6	12
36	Photophysicochemical and Biological Properties of New Phthalocyanines Bearing 4â€(trifluoromethoxy)phenoxy and 2â€(4â€methylthiazolâ€5â€yl)ethoxy Groups on Peripheral Positions. Photochemistry and Photobiology, 2022, 98, 894-906.	1.3	12

Zehra Altuntaåÿ Bayır

#	Article	IF	CITATIONS
37	New phthalonitrile/metal phthalocyanine–gold nanoparticle conjugates for biological applications. Dalton Transactions, 2022, 51, 4466-4476.	1.6	12
38	Metallophthalocyanines with rod-shaped substituents. Transition Metal Chemistry, 2006, 31, 720-723.	0.7	10
39	Anticancer and biological properties of new axially disubstituted silicon phthalocyanines. Dalton Transactions, 2022, 51, 7539-7550.	1.6	7
40	Synthesis of quaternized zinc(II) and cobalt(II) phthalocyanines bearing pyridine-2-yl-ethynyl groups and their DNA binding properties. Turkish Journal of Chemistry, 2018, 42, .	0.5	6
41	Substituted 2,2′-azoquinoxaline palladium(II) complexes. Transition Metal Chemistry, 2000, 25, 404-406.	0.7	4
42	Corrosion Inhibition Effect of 4-(2-Diethylamino-Ethylsulfonyl)-Phthalonitrile and 4,5-Bis(Hexylsulfonyl)-Phthalonitrile. International Journal of Electrochemistry, 2011, 2011, 1-5.	2.4	4
43	Double-decker lutetium phthalocyanine functionalized with 4-phenylthiazol-2-thiol moieties: Synthesis, characterization, electrochemistry, spectroelectrochemistry and electrochromism. Polyhedron, 2021, 209, 115479.	1.0	4
44	A Convenient New Route to Perimidine-2-formaldoxime, 2,2′-Biperimidine and Its Metal Complexes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1997, 27, 1483-1490.	1.8	3
45	Synthesis, Electrochemistry, Spectroelectrochemistry, and Electrochromism of Metallophthalocyanines Substituted with Four (2,4,5â€Trimethylphenyl)ethynyl Groups. Electroanalysis, 2022, 34, 1610-1620.	1.5	3
46	Synthesis and characterization of novel 2-{[2-(dimethylamino)ethyl](methyl)amino} ethoxy-substituted metallophthalocyanines. Turkish Journal of Chemistry, 2014, 38, 1094-1101.	0.5	2
47	Synthesis, electrochemistry, and electrocatalytic activity of thiazole-substituted phthalocyanine complexes. Journal of Solid State Electrochemistry, 2022, 26, 761-772	1.2	1