Thibaut Sesia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8024408/publications.pdf

Version: 2024-02-01

759233 1058476 14 724 12 14 citations h-index g-index papers 16 16 16 1213 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Cognitive Improvements After Intermittent Deep Brain Stimulation of the Nucleus Basalis of Meynert in a Transgenic Rat Model for Alzheimer's Disease: A Preliminary Approach. Journal of Alzheimer's Disease, 2020, 73, 461-466.	2.6	19
2	The Nucleus Basalis of Meynert and Its Role in Deep Brain Stimulation for Cognitive Disorders: A Historical Perspective. Journal of Alzheimer's Disease, 2019, 69, 905-919.	2.6	16
3	Subcortical electrophysiological activity is detectable with high-density EEG source imaging. Nature Communications, 2019, 10, 753.	12.8	174
4	Motivational Impairment is Accompanied by Corticoaccumbal Dysfunction in the BACHD-Tg5 Rat Model of Huntington's Disease. Cerebral Cortex, 2019, 29, 4763-4774.	2.9	3
5	Nucleus accumbens high-frequency stimulation selectively impacts nigrostriatal dopaminergic neurons. International Journal of Neuropsychopharmacology, 2014, 17, 421-427.	2.1	14
6	Evaluation of animal models of obsessive-compulsive disorder: correlation with phasic dopamine neuron activity. International Journal of Neuropsychopharmacology, 2013, 16, 1295-1307.	2.1	43
7	Shifting pharmacology of nicotine use and withdrawal: Breaking the cycle of drug abuse. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2697-2698.	7.1	2
8	Nucleus accumbens and impulsivity. Progress in Neurobiology, 2010, 92, 533-557.	5.7	219
9	Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin. Experimental Neurology, 2010, 225, 302-309.	4.1	63
10	Attenuation of fear-like response by escitalopram treatment after electrical stimulation of the midbrain dorsolateral periaqueductal gray. Experimental Neurology, 2010, 226, 293-300.	4.1	19
11	Cognitive and limbic effects of deep brain stimulation in preclinical studies. Frontiers in Bioscience - Landmark, 2009, Volume, 1891.	3.0	26
12	Cerebellar nuclei are involved in impulsive behaviour. Behavioural Brain Research, 2009, 203, 256-263.	2.2	34
13	Deep brain stimulation of the nucleus accumbens core and shell: Opposite effects on impulsive action. Experimental Neurology, 2008, 214, 135-139.	4.1	59
14	High-frequency stimulation of the dorsolateral periaqueductal gray and ventromedial hypothalamus fails to inhibit panic-like behaviour. Behavioural Brain Research, 2008, 193, 197-203.	2.2	33