
Ryo Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8024230/publications.pdf Version: 2024-02-01

Ρνο Υλμαρλ

#	Article	IF	CITATIONS
1	Singleâ€Molecule Conductance of a Ï€â€Hybridized Tripodal Anchor while Maintaining Electronic Communication. Small, 2021, 17, 2006709.	5.2	3
2	Improving Intramolecular Hopping Charge Transport via Periodical Segmentation of π-Conjugation in a Molecule. Journal of the American Chemical Society, 2021, 143, 599-603.	6.6	14
3	Two-dimensional binary-coded coordinate markers for fabricating nanodevices. Japanese Journal of Applied Physics, 2021, 60, 080702.	0.8	0
4	Electrical conductance measurement of Hg ^{II} -mediated DNA duplex in buffered aqueous solution. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 1083-1087.	0.4	3
5	Mechanical switching of current–voltage characteristics in spiropyran single-molecule junctions. Nanoscale, 2020, 12, 7527-7531.	2.8	19
6	Effects of <i>cis</i> – <i>trans</i> Conformation between Thiophene Rings on Conductance of Oligothiophenes. Journal of Physical Chemistry Letters, 2019, 10, 5292-5296.	2.1	11
7	Highly Planar and Completely Insulated Oligothiophenes: Effects of ï€-Conjugation on Hopping Charge Transport. Journal of Physical Chemistry Letters, 2019, 10, 3197-3204.	2.1	17
8	Three site molecular orbital controlled single-molecule rectifiers based on perpendicularly linked porphyrin–imide dyads. Nanoscale, 2019, 11, 22724-22729.	2.8	5
9	Single-molecule rectifiers based on voltage-dependent deformation of molecular orbitals in carbazole oligomers. Nanoscale, 2018, 10, 19818-19824.	2.8	17
10	Analysis of Single Molecule Conductance of Heterogeneous Porphyrin Arrays by Partial Transmission Probabilities. ChemistrySelect, 2017, 2, 7484-7488.	0.7	2
11	Charge Transport Mechanisms in Oligothiophene Molecular Junctions Studied by Electrical Conductance and Thermopower Measurements. Advances in Atom and Single Molecule Machines, 2017, , 341-353.	0.0	0
12	Methods to Determine Electrical Conductance of Single-Molecule Junctions. , 2016, , 25-59.		0
13	Thiophene-based Tripodal Anchor Units for Hole Transport in Single-Molecule Junctions with Gold Electrodes. Journal of Physical Chemistry Letters, 2015, 6, 3754-3759.	2.1	31
14	Thermoelectricity at the molecular scale: a large Seebeck effect in endohedral metallofullerenes. Nanoscale, 2015, 7, 20497-20502.	2.8	24
15	Thermopower of Benzenedithiol and C ₆₀ Molecular Junctions with Ni and Au Electrodes. Nano Letters, 2014, 14, 5276-5280.	4.5	57
16	Functional oligothiophenes toward molecular wires in single-molecular electronics. Pure and Applied Chemistry, 2012, 84, 931-943.	0.9	11
17	Universal Temperature Crossover Behavior of Electrical Conductance in a Single Oligothiophene Molecular Wire. ACS Nano, 2012, 6, 5078-5082.	7.3	42
18	Magnetoresistance of single molecular junctions measured by a mechanically controllable break junction method. Applied Physics Letters, 2011, 98, .	1.5	47

Ryo Yamada

#	Article	IF	CITATIONS
19	Completely Encapsulated Oligothiophenes: Synthesis, Properties, and Singleâ€Molecule Conductance. Angewandte Chemie - International Edition, 2011, 50, 11980-11984.	7.2	42
20	Electrical Conductance of Single Oligothiophene Molecular Wires: Temperature Effect. Materials Research Society Symposia Proceedings, 2011, 1286, 1.	0.1	1
21	Carrier Transport Mechanisms in Molecular Wires. Hyomen Kagaku, 2011, 32, 616-621.	0.0	0
22	MECHANISM OF ELECTRICAL CONDUCTION THROUGH SINGLE OLIGOTHIOPHENE MOLECULES. Functional Materials Letters, 2010, 03, 245-248.	0.7	2
23	Interfacial energy gradient at a front of an electrochemical wave appearing in CuSn-alloy oscillatory electrodeposition. Electrochimica Acta, 2009, 55, 358-362.	2.6	7
24	Patterning of Organic Semiconductors on Silicon Oxide Using an Atomic Force Microscope with an Alternating-Current Electric Field. Applied Physics Express, 2009, 2, 115001.	1.1	0
25	Electrical Conductance of Oligothiophene Molecular Wires. Nano Letters, 2008, 8, 1237-1240.	4.5	146
26	Observation of the transition from tunneling to hopping carrier transport through single oligothiophene molecules. Materials Research Society Symposia Proceedings, 2008, 1091, 1.	0.1	0
27	Electrical Conductance Measurement of Oligothiophene Molecular Wires Using Nanogap Electrodes Prepared by Electrochemical Plating. Chemistry Letters, 2007, 36, 224-225.	0.7	13
28	STM Studies on Molecular Assembly at Solid/Liquid Interfaces. Nanoscience and Technology, 2007, , 65-100.	1.5	0
29	Transport of a droplet by directional deformations with asymmetric electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 276, 203-206.	2.3	4
30	Characterization of molecular assemblies on silicon surfaces by attenuated total reflectance infrared spectroscopy. Thin Solid Films, 2006, 499, 8-12.	0.8	13
31	Preparation of Organic Light-emitting Field-effect Transistors with Asymmetric Electrodes. Chemistry Letters, 2005, 34, 494-495.	0.7	31
32	Manipulation of Droplets by Dynamically Controlled Wetting Gradients. Langmuir, 2005, 21, 4254-4256.	1.6	59
33	Visible light emission from polymer-based field-effect transistors. Applied Physics Letters, 2004, 84, 3037-3039.	1.5	88
34	Temperature Dependence of the Structure of Alkyl Monolayers on Si(111) Surface via Si–C Bond by ATR-FT-IR Spectroscopy. Chemistry Letters, 2004, 33, 492-493.	0.7	10
35	Materials Science of the Gel to Fluid Phase Transition in a Supported Phospholipid Bilayer. Physical Review Letters, 2002, 89, 246103.	2.9	91
36	Structural Investigation of the Self-Assembled Monolayer of Decanethiol on the Reconstructed and (1×1)-Au(100) Surfaces by Scanning Tunneling Microscopy. Langmuir, 2001, 17, 4148-4150.	1.6	24

Ryo Yamada

#	ARTICLE	IF	CITATIONS
37	Effect of Temperature on Structure of the Self-Assembled Monolayer of Decanethiol on Au(111) Surface. Langmuir, 2000, 16, 5523-5525.	1.6	146
38	Two-Dimensional Crystals of Alkanes Formed on Au(111) Surface in Neat Liquid:Â Structural Investigation by Scanning Tunneling Microscopy. Journal of Physical Chemistry B, 2000, 104, 6021-6027.	1.2	68
39	In Situ Observation of the Two-Dimensional Crystals of Alkanes on a Reconstructed Au(100) Surface in Neat Liquid by Scanning Tunneling Microscopy. Langmuir, 2000, 16, 4413-4415.	1.6	14
40	Formation of Two-Dimensional Crystals of Alkanes on the Au(111) Surface in Neat Liquid. Journal of the American Chemical Society, 1999, 121, 4090-4091.	6.6	95
41	Solvent Effect on the Structure of the Self-Assembled Monolayer of Alkanethiol. Chemistry Letters, 1999, 28, 667-668.	0.7	60
42	Scanning tunnelling microscopy study of the self assembly of 2-mercaptopyrimidine and 4,6-dimethyl-2-mercaptopyrimidine on Au(111). Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1315-1319.	1.7	14
43	In Situ Scanning Tunneling Microscopy Observation of the Self-Assembly Process of Alkanethiols on Gold(111) in Solution. Langmuir, 1998, 14, 855-861.	1.6	174
44	Formation of Molecularly Ordered Domain of 1-Decanethiol in the Mixed Self-Assembled Monolayer with Bis(4-pyridyl)disulfide - A Scanning Tunneling Microscopy Observation. Chemistry Letters, 1997, 26, 987-988.	0.7	14
45	In Situ, Real Time Monitoring of the Self-Assembly Process of Decanethiol on Au(111) in Liquid Phase. A Scanning Tunneling Microscopy Investigation. Langmuir, 1997, 13, 5218-5221.	1.6	126
46	STM Investigation of Self-Assembly Process of Decanethiol on Au (111). Electrochemistry, 1997, 65, 440-443.	0.3	4
47	Novel Scanning Probe Microscope for Local Elasticity Measurement. Japanese Journal of Applied Physics, 1996, 35, L846-L848.	0.8	6
48	Electrical Resistance of Long Oligothiophene Molecules. Applied Physics Express, 0, 2, 025002.	1.1	50