
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8024208/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	China's livestock transition: Driving forces, impacts, and consequences. Science Advances, 2018, 4, eaar8534.	4.7	253
2	Nitrogen, Phosphorus, and Potassium Flows through the Manure Management Chain in China. Environmental Science & Technology, 2016, 50, 13409-13418.	4.6	189
3	Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nature Food, 2020, 1, 648-658.	6.2	131
4	Hotspots for Nitrogen and Phosphorus Losses from Food Production in China: A County-Scale Analysis. Environmental Science & Technology, 2018, 52, 5782-5791.	4.6	129
5	China's future food demand and its implications for trade and environment. Nature Sustainability, 2021, 4, 1042-1051.	11.5	112
6	Accounting for interactions between Sustainable Development Goals is essential for water pollution control in China. Nature Communications, 2022, 13, 730.	5.8	97
7	Accumulation and leaching of nitrate in soils in wheat-maize production in China. Agricultural Water Management, 2019, 212, 407-415.	2.4	93
8	Urbanization: an increasing source of multiple pollutants to rivers in the 21st century. Npj Urban Sustainability, 2021, 1, .	3.7	84
9	Multi-scale Modeling of Nutrient Pollution in the Rivers of China. Environmental Science & Technology, 2019, 53, 9614-9625.	4.6	76
10	Transformation of nitrogen and carbon during composting of manure litter with different methods. Bioresource Technology, 2019, 293, 122046.	4.8	72
11	Exploring Future Food Provision Scenarios for China. Environmental Science & Technology, 2019, 53, 1385-1393.	4.6	62
12	Mitigating ammonia emission from agriculture reduces PM2.5 pollution in the Hai River Basin in China. Science of the Total Environment, 2017, 609, 1152-1160.	3.9	57
13	Global environmental costs of China's thirst for milk. Global Change Biology, 2018, 24, 2198-2211.	4.2	56
14	Modeling nutrients in Lake Dianchi (China) and its watershed. Agricultural Water Management, 2019, 212, 48-59.	2.4	54
15	Seasonality in river export of nitrogen: A modelling approach for the Yangtze River. Science of the Total Environment, 2019, 671, 1282-1292.	3.9	52
16	Spatial Planning Needed to Drastically Reduce Nitrogen and Phosphorus Surpluses in China's Agriculture. Environmental Science & Technology, 2020, 54, 11894-11904.	4.6	50
17	Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China's population. Nature Food, 2022, 3, 152-160.	6.2	50
18	Designing Vulnerable Zones of Nitrogen and Phosphorus Transfers To Control Water Pollution in China. Environmental Science & Technology, 2018, 52, 8987-8988.	4.6	49

#	Article	IF	CITATIONS
19	China's pig relocation in balance. Nature Sustainability, 2019, 2, 888-888.	11.5	48
20	Livestock Housing and Manure Storage Need to Be Improved in China. Environmental Science & Technology, 2017, 51, 8212-8214.	4.6	46
21	Nutrient losses to surface waters in Hai He basin: A case study of Guanting reservoir and Baiyangdian lake. Agricultural Water Management, 2019, 213, 62-75.	2.4	43
22	Cost-effective management of coastal eutrophication: A case study for the Yangtze river basin. Resources, Conservation and Recycling, 2020, 154, 104635.	5.3	38
23	Environmental impacts and resource use of milk production on the North China Plain, based on life cycle assessment. Science of the Total Environment, 2018, 625, 486-495.	3.9	36
24	Global Change Can Make Coastal Eutrophication Control in China More Difficult. Earth's Future, 2020, 8, e2019EF001280.	2.4	35
25	Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China. Agricultural Water Management, 2019, 212, 262-272.	2.4	34
26	Further Improvement of Air Quality in China Needs Clear Ammonia Mitigation Target. Environmental Science & Technology, 2019, 53, 10542-10544.	4.6	32
27	Reducing Ammonia Emissions from Dairy Cattle Production via Cost-Effective Manure Management Techniques in China. Environmental Science & Technology, 2019, 53, 11840-11848.	4.6	31
28	How to avoid coastal eutrophication - a back-casting study for the North China Plain. Science of the Total Environment, 2019, 692, 676-690.	3.9	26
29	Modeling the Contribution of Crops to Nitrogen Pollution in the Yangtze River. Environmental Science & Technology, 2020, 54, 11929-11939.	4.6	26
30	Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations. Agricultural Water Management, 2019, 213, 155-163.	2.4	25
31	Role of Organic and Conservation Agriculture in Ammonia Emissions and Crop Productivity in China. Environmental Science & Technology, 2022, 56, 2977-2989.	4.6	23
32	Policy-enabled stabilization of nitrous oxide emissions from livestock production in China over 1978–2017. Nature Food, 2022, 3, 356-366.	6.2	20
33	Food and feed trade has greatly impacted global land and nitrogen use efficiencies over 1961–2017. Nature Food, 2021, 2, 780-791.	6.2	15
34	A food system revolution for China in the post-pandemic world. Resources, Environment and Sustainability, 2020, 2, 100013.	2.9	14
35	Nutrient use efficiencies, losses, and abatement strategies for peri-urban dairy production systems. Journal of Environmental Management, 2018, 228, 232-238.	3.8	11
36	Strategies to reduce ammonia emissions from livestock and their cost-benefit analysis: A case study of Sheyang county. Environmental Pollution, 2021, 290, 118045.	3.7	7

#	Article	IF	CITATIONS
37	Seasonal River Export of Nitrogen to Guanting and Baiyangdian Lakes in the Hai He Basin. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005689.	1.3	7
38	Dietary manipulation to reduce nitrogen and phosphorus excretion by dairy cows. Livestock Science, 2019, 228, 61-66.	0.6	5
39	Reply to Comment on "Multi-Scale Modeling of Nutrient Pollution in the Rivers of China― Environmental Science & Technology, 2020, 54, 2046-2047.	4.6	2