## Britt Koskella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8024133/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17, 569-586.                                                                                                              | 28.6 | 1,138     |
| 2  | Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiology Reviews, 2014, 38, 916-931.                                                                          | 8.6  | 614       |
| 3  | Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of<br>Gastrointestinal Pharmacology and Therapeutics, 2017, 8, 162.                                                              | 1.1  | 612       |
| 4  | Mutation Pressure and the Evolution of Organelle Genomic Architecture. Science, 2006, 311, 1727-1730.                                                                                                                            | 12.6 | 490       |
| 5  | A synthesis of experimental work on parasite local adaptation. Ecology Letters, 2007, 10, 418-434.                                                                                                                               | 6.4  | 344       |
| 6  | Understanding Bacteriophage Specificity in Natural Microbial Communities. Viruses, 2013, 5, 806-823.                                                                                                                             | 3.3  | 291       |
| 7  | The microbiome beyond the horizon of ecological and evolutionary theory. Nature Ecology and Evolution, 2017, 1, 1606-1615.                                                                                                       | 7.8  | 216       |
| 8  | The Pathobiome in Animal and Plant Diseases. Trends in Ecology and Evolution, 2019, 34, 996-1008.                                                                                                                                | 8.7  | 208       |
| 9  | Nutrient- and Dose-Dependent Microbiome-Mediated Protection against a Plant Pathogen. Current<br>Biology, 2018, 28, 2487-2492.e3.                                                                                                | 3.9  | 185       |
| 10 | Experimental coevolution of species interactions. Trends in Ecology and Evolution, 2013, 28, 367-375.                                                                                                                            | 8.7  | 180       |
| 11 | Priority effects in microbiome assembly. Nature Reviews Microbiology, 2022, 20, 109-121.                                                                                                                                         | 28.6 | 180       |
| 12 | Heavy metal pollution and co-selection for antibiotic resistance: A microbial palaeontology approach.<br>Environment International, 2019, 132, 105117.                                                                           | 10.0 | 167       |
| 13 | Understanding the ecology and evolution of host–parasite interactions across scales. Evolutionary<br>Applications, 2016, 9, 37-52.                                                                                               | 3.1  | 146       |
| 14 | Successive passaging of a plant-associated microbiome reveals robust habitat and host<br>genotype-dependent selection. Proceedings of the National Academy of Sciences of the United States<br>of America, 2020, 117, 1148-1159. | 7.1  | 146       |
| 15 | Thirteen challenges in modelling plant diseases. Epidemics, 2015, 10, 6-10.                                                                                                                                                      | 3.0  | 145       |
| 16 | EVIDENCE FOR NEGATIVE FREQUENCY-DEPENDENT SELECTION DURING EXPERIMENTAL COEVOLUTION OF A FRESHWATER SNAIL AND A STERILIZING TREMATODE. Evolution; International Journal of Organic Evolution, 2009, 63, 2213-2221.               | 2.3  | 142       |
| 17 | Bacteria–Phage Interactions in Natural Environments. Advances in Applied Microbiology, 2014, 89, 135-183.                                                                                                                        | 2.4  | 138       |
| 18 | THE ORIGIN OF SPECIFICITY BY MEANS OF NATURAL SELECTION: EVOLVED AND NONHOST RESISTANCE IN<br>HOST-PATHOGEN INTERACTIONS, Evolution: International Journal of Organic Evolution, 2013, 67, 1-9                                   | 2.3  | 114       |

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The costs of evolving resistance in heterogeneous parasite environments. Proceedings of the Royal<br>Society B: Biological Sciences, 2012, 279, 1896-1903.                                                                                                         | 2.6 | 106       |
| 20 | Local Biotic Environment Shapes the Spatial Scale of Bacteriophage Adaptation to Bacteria. American<br>Naturalist, 2011, 177, 440-451.                                                                                                                             | 2.1 | 99        |
| 21 | Exploring the risks of phage application in the environment. Frontiers in Microbiology, 2013, 4, 358.                                                                                                                                                              | 3.5 | 97        |
| 22 | High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biology, 2020, 18, e3000877.                                                                                                                                                            | 5.6 | 91        |
| 23 | Phage-Mediated Selection on Microbiota of a Long-Lived Host. Current Biology, 2013, 23, 1256-1260.                                                                                                                                                                 | 3.9 | 89        |
| 24 | The impact of bacteriophages on phyllosphere bacterial abundance and composition. Molecular Ecology, 2018, 27, 2025-2038.                                                                                                                                          | 3.9 | 82        |
| 25 | Interesting Open Questions in Disease Ecology and Evolution. American Naturalist, 2014, 184, S1-S8.                                                                                                                                                                | 2.1 | 74        |
| 26 | The study of host–microbiome (co)evolution across levels of selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190604.                                                                                                | 4.0 | 69        |
| 27 | The phyllosphere. Current Biology, 2020, 30, R1143-R1146.                                                                                                                                                                                                          | 3.9 | 64        |
| 28 | Shared Forces of Sex Chromosome Evolution in Haploid-Mating and Diploid-Mating<br>OrganismsSequence data from this article have been deposited with the EMBL/GenBank Data Libraries<br>under the accession nos. BZ81929 and BZ782612 Genetics, 2004, 168, 141-146. | 2.9 | 63        |
| 29 | ADVICE OF THE ROSE: EXPERIMENTAL COEVOLUTION OF A TREMATODE PARASITE AND ITS SNAIL HOST. Evolution; International Journal of Organic Evolution, 2007, 61, 152-159.                                                                                                 | 2.3 | 62        |
| 30 | A signature of tree health? Shifts in the microbiome and the ecological drivers of horse chestnut bleeding canker disease. New Phytologist, 2017, 215, 737-746.                                                                                                    | 7.3 | 61        |
| 31 | The cost of phage resistance in a plant pathogenic bacterium is contextâ€dependent. Evolution;<br>International Journal of Organic Evolution, 2015, 69, 1321-1328.                                                                                                 | 2.3 | 58        |
| 32 | Bacteria-Phage Interactions across Time and Space: Merging Local Adaptation and Time-Shift<br>Experiments to Understand Phage Evolution. American Naturalist, 2014, 184, S9-S21.                                                                                   | 2.1 | 56        |
| 33 | Biofilm Structure Promotes Coexistence of Phage-Resistant and Phage-Susceptible Bacteria. MSystems, 2020, 5, .                                                                                                                                                     | 3.8 | 52        |
| 34 | Phage resistance evolution <i>in vitro</i> is not reflective of <i>in vivo</i> outcome in a<br>plantâ€bacteriaâ€phage system*. Evolution; International Journal of Organic Evolution, 2019, 73, 2461-2475.                                                         | 2.3 | 51        |
| 35 | Multifaceted Impacts of Bacteriophages in the Plant Microbiome. Annual Review of Phytopathology,<br>2018, 56, 361-380.                                                                                                                                             | 7.8 | 48        |
| 36 | Adaptation in Natural Microbial Populations. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 503-522.                                                                                                                                              | 8.3 | 47        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Pathogen Relatedness Affects the Prevalence of Withinâ€Host Competition. American Naturalist, 2006,<br>168, 121-126.                                                                                                                | 2.1 | 46        |
| 38 | Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. ISME Journal, 2022, 16, 1376-1387.                                                                                          | 9.8 | 43        |
| 39 | The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140297. | 4.0 | 42        |
| 40 | Transplanting Fecal Virus-Like Particles Reduces High-Fat Diet-Induced Small Intestinal Bacterial Overgrowth in Mice. Frontiers in Cellular and Infection Microbiology, 2019, 9, 348.                                               | 3.9 | 40        |
| 41 | Assessing Illumina technology for the high-throughput sequencing of bacteriophage genomes. PeerJ, 2016, 4, e2055.                                                                                                                   | 2.0 | 38        |
| 42 | Tomato Seed-Associated Bacteria Confer Protection of Seedlings Against Foliar Disease Caused by <i>Pseudomonas syringae</i> . Phytobiomes Journal, 2019, 3, 177-190.                                                                | 2.7 | 36        |
| 43 | Friend and foe: factors influencing the movement of the bacterium <i>Helicobacter pylori</i> along the parasitism–mutualism continuum. Evolutionary Applications, 2015, 8, 9-22.                                                    | 3.1 | 33        |
| 44 | The effects of host age and spatial location on bacterial community composition in the English Oak tree ( <i>Quercus robur</i> ). Environmental Microbiology Reports, 2016, 8, 649-658.                                             | 2.4 | 33        |
| 45 | Resistance gained, resistance lost: An explanation for host–parasite coexistence. PLoS Biology, 2018,<br>16, e3000013.                                                                                                              | 5.6 | 30        |
| 46 | Understanding the Impacts of Bacteriophage Viruses: From Laboratory Evolution to Natural Ecosystems. Annual Review of Virology, 2022, 9, 57-78.                                                                                     | 6.7 | 30        |
| 47 | Rapid quantification of bacteriophages and their bacterial hosts in vitro and in vivo using droplet<br>digital PCR. Journal of Virological Methods, 2018, 259, 18-24.                                                               | 2.1 | 27        |
| 48 | Hybrid Fitness in a Locally Adapted Parasite. American Naturalist, 2008, 172, 772-782.                                                                                                                                              | 2.1 | 25        |
| 49 | Host–parasite fluctuating selection in the absence of specificity. Proceedings of the Royal Society B:<br>Biological Sciences, 2017, 284, 20171615.                                                                                 | 2.6 | 25        |
| 50 | Protective microbiomes can limit the evolution of host pathogen defense. Evolution Letters, 2019, 3, 534-543.                                                                                                                       | 3.3 | 25        |
| 51 | Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages. ISME Journal, 2011, 5, 1809-1817.                                                                             | 9.8 | 24        |
| 52 | Introduction: microbial local adaptation: insights from natural populations, genomics and experimental evolution. Molecular Ecology, 2017, 26, 1703-1710.                                                                           | 3.9 | 24        |
| 53 | Why Evolve Reliance on the Microbiome for Timing of Ontogeny?. MBio, 2019, 10, .                                                                                                                                                    | 4.1 | 22        |
|    |                                                                                                                                                                                                                                     |     |           |

4

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Application of ecological and evolutionary theory to microbiome community dynamics across systems. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202886.                     | 2.6 | 19        |
| 56 | Water stress and disruption of mycorrhizas induce parallel shifts in phyllosphere microbiome composition. New Phytologist, 2022, 234, 2018-2031.                                                     | 7.3 | 19        |
| 57 | Adaptation of the pathogen, <i>Pseudomonas syringae</i> , during experimental evolution on a native vs. alternative host plant. Molecular Ecology, 2017, 26, 1790-1801.                              | 3.9 | 14        |
| 58 | Multiyear Time-Shift Study of Bacteria and Phage Dynamics in the Phyllosphere. American Naturalist, 2022, 199, 126-140.                                                                              | 2.1 | 13        |
| 59 | Microbiome: Insect Herbivory Drives Plant Phyllosphere Dysbiosis. Current Biology, 2020, 30, R412-R414.                                                                                              | 3.9 | 12        |
| 60 | Bacteria-Phage Antagonistic Coevolution and the Implications for Phage Therapy. , 2017, , 1-21.                                                                                                      |     | 12        |
| 61 | Polyploidy and microbiome associations mediate similar responses to pathogens in Arabidopsis.<br>Current Biology, 2022, 32, 2719-2729.e5.                                                            | 3.9 | 12        |
| 62 | Coevolution of Host and Pathogen. , 2017, , 115-140.                                                                                                                                                 |     | 10        |
| 63 | The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity. Frontiers in Immunology, 2017, 8, 1114.                                                | 4.8 | 8         |
| 64 | New approaches to characterizing bacteria–phage interactions in microbial communities and microbiomes. Environmental Microbiology Reports, 2019, 11, 15-16.                                          | 2.4 | 8         |
| 65 | Pathogen Relatedness Affects the Prevalence of within-Host Competition. American Naturalist, 2006, 168, 121.                                                                                         | 2.1 | 7         |
| 66 | Coevolution of Host and Pathogen. , 2011, , 147-171.                                                                                                                                                 |     | 4         |
| 67 | Evolutionary applications research highlight for issue 1. Evolutionary Applications, 2015, 8, 1-1.                                                                                                   | 3.1 | 4         |
| 68 | Bacteriophage-Mediated Reduction of Bacterial Speck on Tomato Seedlings. Phage, 2020, 1, 205-212.                                                                                                    | 1.7 | 4         |
| 69 | Temporally Selective Modification of the Tomato Rhizosphere and Root Microbiome by Volcanic Ash<br>Fertilizer Containing Micronutrients. Applied and Environmental Microbiology, 2022, 88, e0004922. | 3.1 | 4         |
| 70 | Bacteria-Phage Antagonistic Coevolution and the Implications for Phage Therapy. , 2021, , 231-251.                                                                                                   |     | 3         |
| 71 | The Potential Role of Bacteriophages in Shaping Plant-Bacterial Interactions. , 2015, , 199-220.                                                                                                     |     | 2         |
| 72 | Research highlights for issue 6: the <scp>CRISPR</scp> /Cas revolution. Evolutionary Applications, 2015, 8, 525-526.                                                                                 | 3.1 | 1         |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Research highlights for issue 7: the evolution of invasiveness. Evolutionary Applications, 2015, 8, 633-634.                                                                         | 3.1 | 1         |
| 74 | Understanding adaptation and diversification: Insights from the study of microbial experimental evolution. Evolution; International Journal of Organic Evolution, 2015, 69, 279-280. | 2.3 | 1         |
| 75 | Perturbation of Gut Microbiome Leads to Fluctuations in Phage Population Density.<br>Gastroenterology, 2017, 152, S819-S820.                                                         | 1.3 | 1         |
| 76 | The effects of host age and spatial location on bacterial community composition in the English Oak<br>tree ( <i>Quercus robur</i> ). Environmental Microbiology Reports, 2016, , .   | 2.4 | 1         |
| 77 | Research highlights for issue 3. Evolutionary Applications, 2014, 7, 337-338.                                                                                                        | 3.1 | 0         |
| 78 | Research highlights for issue 5: the role of the microbiome in shaping evolution. Evolutionary Applications, 2014, 7, 519-520.                                                       | 3.1 | 0         |
| 79 | Research highlights for issue 6: the applicability of model system research. Evolutionary Applications, 2014, 7, 607-608.                                                            | 3.1 | 0         |
| 80 | Research highlight for issue 8: disease evolution and ecology across space. Evolutionary Applications, 2014, 7, 869-870.                                                             | 3.1 | 0         |
| 81 | Evolutionary Applications research highlights for issue 10: the everâ€evolving field of agriculture.<br>Evolutionary Applications, 2014, 7, 1159-1160.                               | 3.1 | 0         |
| 82 | Research highlights for issue 4: Predicting the evolutionary response of populations to climate change. Evolutionary Applications, 2014, 7, 431-432.                                 | 3.1 | 0         |
| 83 | Research highlights for issue 2: recent applications in molecular evolution. Evolutionary Applications, 2015, 8, 119-120.                                                            | 3.1 | 0         |
| 84 | Research highlights for issue 10: understanding complex lifecycles. Evolutionary Applications, 2015, 8, 917-918.                                                                     | 3.1 | 0         |
| 85 | Research highlights for issue 4: applied evolution in fisheries science. Evolutionary Applications, 2015,<br>8, 305-306.                                                             | 3.1 | 0         |
| 86 | Research highlights for issue 5: disease spillover among natural and managed populations.<br>Evolutionary Applications, 2015, 8, 411-412.                                            | 3.1 | 0         |
| 87 | Coevolution, Bacterial-Phage. , 2016, , 305-313.                                                                                                                                     |     | 0         |
| 88 | Britt Koskella. Current Biology, 2017, 27, R1252-R1254.                                                                                                                              | 3.9 | 0         |
| 89 | High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877.                                                                                          |     | 0         |
| 90 | High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877.                                                                                          |     | 0         |

6

| #  | Article                                                                                     | IF | CITATIONS |
|----|---------------------------------------------------------------------------------------------|----|-----------|
| 91 | High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877. |    | 0         |
| 92 | High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877. |    | 0         |
| 93 | High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877. |    | 0         |
| 94 | High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877. |    | 0         |