Luzia S Germann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8024018/publications.pdf Version: 2024-02-01

LUZIA S CEDMANN

#	Article	IF	CITATIONS
1	Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time <i>In Situ</i> Monitoring. Accounts of Chemical Research, 2022, 55, 1262-1277.	15.6	34
2	Open versus Interpenetrated: Switchable Supramolecular Trajectories in Mechanosynthesis of a Halogen-Bonded Borromean Network. CheM, 2021, 7, 146-154.	11.7	17
3	In situ monitoring of mechanochemical covalent organic framework formation reveals templating effect of liquid additive. CheM, 2021, 7, 1639-1652.	11.7	36
4	Real-Time in Situ Monitoring of Particle and Structure Evolution in the Mechanochemical Synthesis of UiO-66 Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 49-54.	3.0	42
5	Challenging the Ostwald rule of stages in mechanochemical cocrystallisation. Chemical Science, 2020, 11, 10092-10100.	7.4	49
6	Monitoring polymer-assisted mechanochemical cocrystallisation through <i>in situ</i> X-ray powder diffraction. Chemical Communications, 2020, 56, 8743-8746.	4.1	15
7	In situ monitoring of mechanochemical synthesis of calcium urea phosphate fertilizer cocrystal reveals highly effective water-based autocatalysis. Chemical Science, 2020, 11, 2350-2355.	7.4	40
8	Rational Synthesis of Mixed-Metal Microporous Metal–Organic Frameworks with Controlled Composition Using Mechanochemistry. Chemistry of Materials, 2019, 31, 5494-5501.	6.7	96
9	Controlling the Polymorphism and Topology Transformation in Porphyrinic Zirconium Metal–Organic Frameworks via Mechanochemistry. Journal of the American Chemical Society, 2019, 141, 19214-19220.	13.7	73
10	Trimorphism of Zn(NCS) ₂ (4-dimethylaminopyridine) ₂ : Crystal Structures, Thermodynamic Relations, and Comparison with the Co(II) Polymorphs. Crystal Growth and Design, 2019, 19, 1134-1143.	3.0	12
11	Structures, Thermodynamic Relations, and Magnetism of Stable and Metastable Ni(NCS) ₂ Coordination Polymers. Inorganic Chemistry, 2018, 57, 3305-3314.	4.0	45
12	Supercritical Carbon Dioxide Enables Rapid, Clean, and Scalable Conversion of a Metal Oxide into Zeolitic Metal–Organic Frameworks. Crystal Growth and Design, 2018, 18, 3222-3228.	3.0	36
13	Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal–organic frameworks. Chemical Communications, 2018, 54, 6999-7002.	4.1	63
14	Tuning the stacking behaviour of a 2D covalent organic framework through non-covalent interactions. Materials Chemistry Frontiers, 2017, 1, 1354-1361.	5.9	95
15	Thermal Transformation of a Zero-Dimensional Thiocyanate Precursor into a Ferromagnetic Three-Dimensional Coordination Network via a Layered Intermediate. Crystal Growth and Design, 2017, 17, 3997-4005.	3.0	31
16	CdX ₂ Coordination Polymers with 2 hloropyrazine and 2â€Methylpyrazine: Similar Ligands – Similar Structures – Different Reactivity. European Journal of Inorganic Chemistry, 2017, 2017, 1245-1255.	2.0	14
17	Synthesis, Crystal Structures, and Properties of <i>M</i> (NCS) ₂ â€3â€aminomethylpyridine Coordination Compounds (<i>M</i> = Cd, Zn). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1904-1912.	1.2	12
18	Synthesis, Structures, and Physical Properties of Thiocyanate Coordination Compounds with 3â€Hydroxymethylpyridine. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1497-1507.	1.2	5

LUZIA S GERMANN

#	Article	IF	CITATIONS
19	Synthesis, Structures and Properties of Cobalt Thiocyanate Coordination Compounds with 4-(hydroxymethyl)pyridine as Co-ligand. Crystals, 2016, 6, 38.	2.2	18
20	On the Crystal Structure of a Previously Unknown Anhydrous Zinc Hydroxide Sulfate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 255-259.	1.2	11
21	Synthesis, structures, magnetic, and theoretical investigations of layered Co and Ni thiocyanate coordination polymers. Dalton Transactions, 2016, 45, 18190-18201.	3.3	71
22	<i>In Situ</i> Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society, 2016, 138, 2929-2932.	13.7	194
23	Solid-State Reversible Nucleophilic Addition in a Highly Flexible MOF. Journal of the American Chemical Society, 2015, 137, 13072-13078.	13.7	35