Jesper BÃ je Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8023989/publications.pdf

Version: 2024-02-01

106 papers 8,952 citations

45 h-index 91 g-index

108 all docs

108 docs citations

108 times ranked 11906 citing authors

#	Article	IF	CITATIONS
1	Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 557-588.	8.2	1,155
2	Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nature Reviews Gastroenterology and Hepatology, 2016, 13, 261-280.	8.2	964
3	Genomic and Genetic Characterization of Cholangiocarcinoma Identifies Therapeutic Targets for Tyrosine Kinase Inhibitors. Gastroenterology, 2012, 142, 1021-1031.e15.	0.6	443
4	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Reports, 2017, 18, 2780-2794.	2.9	416
5	Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology, 2014, 59, 911-923.	3.6	382
6	Common Molecular Subtypes Among Asian Hepatocellular Carcinoma and Cholangiocarcinoma. Cancer Cell, 2017, 32, 57-70.e3.	7.7	324
7	Targeting the mTOR pathway in hepatocellular carcinoma: Current state and future trends. Journal of Hepatology, 2014, 60, 855-865.	1.8	262
8	Functional and genetic deconstruction of the cellular origin in liver cancer. Nature Reviews Cancer, 2015, 15, 653-667.	12.8	249
9	Curcumin effectively inhibits oncogenic NF- $\hat{\mathbb{P}}$ B signaling and restrains stemness features in liver cancer. Journal of Hepatology, 2015, 63, 661-669.	1.8	237
10	Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma. Hepatology, 2012, 56, 1792-1803.	3.6	203
11	Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. Journal of Experimental Medicine, 2011, 208, 1963-1976.	4.2	183
12	p53-Dependent Nestin Regulation Links Tumor Suppression to Cellular Plasticity in Liver Cancer. Cell, 2014, 158, 579-592.	13.5	176
13	Modeling Pathogenesis of Primary Liver Cancer in Lineage-Specific Mouse Cell Types. Gastroenterology, 2013, 145, 221-231.	0.6	153
14	Metabolic rearrangements in primary liver cancers: cause and consequences. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 748-766.	8.2	144
15	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-Î ² Superfamily. Cell Systems, 2018, 7, 422-437.e7.	2.9	134
16	Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. Journal of Hepatology, 2017, 66, 102-115.	1.8	130
17	An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nature Communications, 2017, 8, 14294.	5.8	119
18	Cholangiocarcinoma landscape in Europe: Diagnostic, prognostic and therapeutic insights from the ENSCCA Registry. Journal of Hepatology, 2022, 76, 1109-1121.	1.8	119

#	Article	IF	Citations
19	Progenitor-derived hepatocellular carcinoma model in the rat. Hepatology, 2010, 51, 1401-1409.	3.6	118
20	Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma. Hepatology, 2018, 68, 949-963.	3.6	106
21	MIR21 Drives Resistance to Heat Shock Protein 90 Inhibition in Cholangiocarcinoma. Gastroenterology, 2018, 154, 1066-1079.e5.	0.6	94
22	An Integrated Genomic and Epigenomic Approach Predicts Therapeutic Response to Zebularine in Human Liver Cancer. Science Translational Medicine, 2010, 2, 54ra77.	5.8	92
23	Desmoplastic Tumor Microenvironment and Immunotherapy in Cholangiocarcinoma. Trends in Cancer, 2018, 4, 239-255.	3.8	92
24	Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling. Genes and Development, 2013, 27, 1706-1717.	2.7	90
25	mTOR Inhibitors Synergize on Regression, Reversal of Gene Expression, and Autophagy in Hepatocellular Carcinoma. Science Translational Medicine, 2012, 4, 139ra84.	5.8	88
26	Sequential transcriptome analysis of human liver cancer indicates late stage acquisition of malignant traits. Journal of Hepatology, 2014, 60, 346-353.	1.8	85
27	Genetic profiling of intrahepatic cholangiocarcinoma. Current Opinion in Gastroenterology, 2012, 28, 266-272.	1.0	82
28	SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma. Journal of Hepatology, 2017, 67, 72-83.	1.8	81
29	Epigenetic reprogramming modulates malignant properties of human liver cancer. Hepatology, 2014, 59, 2251-2262.	3.6	75
30	Antitumor Effects in Hepatocarcinoma of Isoform-Selective Inhibition of HDAC2. Cancer Research, 2014, 74, 4752-4761.	0.4	74
31	Coactivation of AKT and \hat{I}^2 -Catenin in Mice Rapidly Induces Formation of Lipogenic Liver Tumors. Cancer Research, 2011, 71, 2718-2727.	0.4	73
32	UBE1L causes lung cancer growth suppression by targeting cyclin D1. Molecular Cancer Therapeutics, 2008, 7, 3780-3788.	1.9	72
33	Human hepatic cancer stem cells are characterized by common stemness traits and diverse oncogenic pathways. Hepatology, 2011, 54, 1031-1042.	3.6	72
34	MYC Activates Stem-like Cell Potential in Hepatocarcinoma by a p53-Dependent Mechanism. Cancer Research, 2014, 74, 5903-5913.	0.4	71
35	Lipid alterations in chronic liver disease and liver cancer. JHEP Reports, 2022, 4, 100479.	2.6	69
36	Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: Molecular networks and biological concepts. Journal of Hepatology, 2015, 62, 198-207.	1.8	66

#	Article	IF	Citations
37	Loss of c-Met Disrupts Gene Expression Program Required for G2/M Progression during Liver Regeneration in Mice. PLoS ONE, 2010, 5, e12739.	1.1	66
38	Definition of Ubiquitination Modulator COP1 as a Novel Therapeutic Target in Human Hepatocellular Carcinoma. Cancer Research, 2010, 70, 8264-8269.	0.4	65
39	Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells, 2020, 9, 721.	1.8	63
40	Dysregulation of Iron Metabolism in Cholangiocarcinoma Stem-like Cells. Scientific Reports, 2017, 7, 17667.	1.6	60
41	Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma. Journal of Hepatology, 2021, 74, 1373-1385.	1.8	60
42	TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms. Gut, 2021, 70, 1345-1361.	6.1	59
43	Ribosomal protein mRNAs are primary targets of regulation in RNase-L-induced senescence. RNA Biology, 2009, 6, 305-315.	1.5	56
44	Molecular pathogenesis of intrahepatic cholangiocarcinoma. Journal of Hepato-Biliary-Pancreatic Sciences, 2015, 22, 101-113.	1.4	51
45	Association of Aflatoxin and Gallbladder Cancer. Gastroenterology, 2017, 153, 488-494.e1.	0.6	49
46	Causes of hOCT1â€Dependent Cholangiocarcinoma Resistance to Sorafenib and Sensitization by Tumorâ€Selective Gene Therapy. Hepatology, 2019, 70, 1246-1261.	3.6	41
47	Oncogenic driver genes and the inflammatory microenvironment dictate liver tumor phenotype. Hepatology, 2016, 63, 1888-1899.	3.6	40
48	Post-transcriptional Regulation of RNase-L Expression Is Mediated by the 3′-Untranslated Region of Its mRNA. Journal of Biological Chemistry, 2007, 282, 7950-7960.	1.6	39
49	Epigenetic events involved in organic cation transporter 1â€dependent impaired response of hepatocellular carcinoma to sorafenib. British Journal of Pharmacology, 2019, 176, 787-800.	2.7	39
50	Transcriptional, post-transcriptional and chromatin-associated regulation of pri-miRNAs, pre-miRNAs and moRNAs. Nucleic Acids Research, 2016, 44, 3070-3081.	6.5	38
51	Dual-initiation promoters with intertwined canonical and TCT/TOP transcription start sites diversify transcript processing. Nature Communications, 2020, 11, 168.	5.8	37
52	Epigenome Remodeling in Cholangiocarcinoma. Trends in Cancer, 2019, 5, 335-350.	3.8	36
53	Transcriptomic and histopathological analysis of cholangiolocellular differentiation trait in intrahepatic cholangiocarcinoma. Liver International, 2018, 38, 113-124.	1.9	33
54	Epigenome dysregulation in cholangiocarcinoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1423-1434.	1.8	31

#	Article	IF	CITATIONS
55	The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma. EBioMedicine, 2021, 73, 103661.	2.7	31
56	Integrative molecular characterisation of gallbladder cancer reveals micro-environment-associated subtypes. Journal of Hepatology, 2021, 74, 1132-1144.	1.8	30
57	Identification of a Panâ€Gammaâ€Secretase Inhibitor Response Signature for Notchâ€Driven Cholangiocarcinoma. Hepatology, 2020, 71, 196-213.	3.6	29
58	The protein kinase CK2 contributes to the malignant phenotype of cholangiocarcinoma cells. Oncogenesis, 2019, 8, 61.	2.1	27
59	E2F1 and E2F2-Mediated Repression of CPT2 Establishes a Lipid-Rich Tumor-Promoting Environment. Cancer Research, 2021, 81, 2874-2887.	0.4	27
60	Molecular Targets in Cholangiocarcinoma. Hepatology, 2021, 73, 62-74.	3.6	26
61	Interaction between the 2'-5' oligoadenylate synthetase-like protein p59 OASL and the transcriptional repressor methyl CpG-binding protein 1. FEBS Journal, 2004, 271, 628-636.	0.2	25
62	A Gene Expression Signature Associated with Overall Survival in Patients with Hepatocellular Carcinoma Suggests a New Treatment Strategy. Molecular Pharmacology, 2016, 89, 263-272.	1.0	21
63	Molecular perturbations in cholangiocarcinoma: Is it time for precision medicine?. Liver International, 2019, 39, 32-42.	1.9	21
64	Serum IL6 as a Prognostic Biomarker and IL6R as a Therapeutic Target in Biliary Tract Cancers. Clinical Cancer Research, 2020, 26, 5655-5667.	3.2	21
65	Molecular Pathogenesis and Current Therapy in Intrahepatic Cholangiocarcinoma. Digestive Diseases, 2016, 34, 440-451.	0.8	20
66	Application of patientâ€derived liver cancer cells for phenotypic characterization and therapeutic target identification. International Journal of Cancer, 2019, 144, 2782-2794.	2.3	19
67	Genomic Decoding of Intrahepatic Cholangiocarcinoma Reveals Therapeutic Opportunities. Gastroenterology, 2013, 144, 687-690.	0.6	18
68	Molecular constituents of the extracellular matrix in rat liver mounting a hepatic progenitor cell response for tissue repair. Fibrogenesis and Tissue Repair, 2013, 6, 21.	3.4	17
69	Advances in cholangiocarcinoma research: report from the third Cholangiocarcinoma Foundation Annual Conference. Journal of Gastrointestinal Oncology, 2016, 7, 819-827.	0.6	17
70	High mobility group A1 enhances tumorigenicity of human cholangiocarcinoma and confers resistance to therapy. Molecular Carcinogenesis, 2017, 56, 2146-2157.	1.3	17
71	Next-Generation Sequencing: Application in Liver Cancerâ€"Past, Present and Future?. Biology, 2012, 1, 383-394.	1.3	16
72	A perspective on molecular therapy in cholangiocarcinoma: present status and future directions. Hepatic Oncology, 2014, 1, 143-157.	4.2	16

#	Article	lF	Citations
73	Liver cancer oncogenomics: opportunities and dilemmas for clinical applications. Hepatic Oncology, 2015, 2, 79-93.	4.2	16
74	Molecular profiling of intrahepatic cholangiocarcinoma: the search for new therapeutic targets. Expert Review of Gastroenterology and Hepatology, 2017, 11, 349-356.	1.4	16
75	Driver mutations of intrahepatic cholangiocarcinoma shape clinically relevant genomic clusters with distinct molecular features and therapeutic vulnerabilities. Theranostics, 2022, 12, 260-276.	4.6	16
76	The proteaseâ€inhibitor SerpinB3 as a critical modulator of the stemâ€like subset in human cholangiocarcinoma. Liver International, 2022, 42, 233-248.	1.9	15
77	Adverse genomic alterations and stemness features are induced by field cancerization in the microenvironment of hepatocellular carcinomas. Oncotarget, 2017, 8, 48688-48700.	0.8	15
78	Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids. Hepatology, 2022, 76, 1617-1633.	3.6	15
79	A morphogenetic EphB/EphrinB code controls hepatopancreatic duct formation. Nature Communications, 2019, 10, 5220.	5.8	14
80	Co-expression of YAP and TAZ associates with chromosomal instability in human cholangiocarcinoma. BMC Cancer, 2021, 21, 1079.	1.1	14
81	Mucosalâ€associated invariant Tâ€eell tumor infiltration predicts longâ€term survival in cholangiocarcinoma. Hepatology, 2022, 75, 1154-1168.	3.6	14
82	Extracellular Signalâ€Regulated Kinase 5 Regulates the Malignant Phenotype of Cholangiocarcinoma Cells. Hepatology, 2021, 74, 2007-2020.	3.6	12
83	Fibrolamellar Hepatocellular Carcinoma: A Rare but Distinct TypeÂof Liver Cancer. Gastroenterology, 2015, 148, 707-710.	0.6	11
84	Targeting NAE1-mediated protein hyper-NEDDylation halts cholangiocarcinogenesis and impacts on tumor-stroma crosstalk in experimental models. Journal of Hepatology, 2022, 77, 177-190.	1.8	11
85	Intrahepatic cholangiocarcinoma: A single-cell resolution unraveling the complexity of the tumor microenvironment. Journal of Hepatology, 2020, 73, 1007-1009.	1.8	9
86	Ancestrally Duplicated Conserved Noncoding Element Suggests Dual Regulatory Roles of HOTAIR in cis and trans. IScience, 2020, 23, 101008.	1.9	9
87	Epigenetic modifications precede molecular alterations and drive human hepatocarcinogenesis. JCI Insight, 2021, 6, .	2.3	9
88	miRâ€579â€3p Controls Hepatocellular Carcinoma Formation by Regulating the Phosphoinositide 3â€Kinase–Protein Kinase B Pathway in Chronically Inflamed Liver. Hepatology Communications, 2022, 6, 1467-1481.	2.0	8
89	Heterogeneity Among Liver Cancer—A Hurdle to Optimizing Therapy. Gastroenterology, 2016, 150, 818-821.	0.6	7
90	Whole blood microRNAs capture systemic reprogramming and have diagnostic potential in patients with biliary tract cancer. Journal of Hepatology, 2022, 77, 1047-1058.	1.8	7

#	Article	IF	CITATIONS
91	Cholangiocarcinoma: Stateâ€ofâ€theâ€art knowledge and challenges. Liver International, 2019, 39, 5-6.	1.9	6
92	Structural aberrations are associated with poor survival in patients with clonal cytopenia of undetermined significance. Haematologica, 2021, 106, 1762-1766.	1.7	6
93	Determination of primary microRNA processing in clinical samples by targeted pri-miR-sequencing. Rna, 2020, 26, 1726-1730.	1.6	5
94	Genetic Optimization of Liver Cancer Therapy: A Patient-Derived Primary Cancer Cell-Based Model. Gastroenterology, 2017, 152, 19-21.	0.6	4
95	Single cell profiling reveals window for immunotherapy in liver cancers. Hepatobiliary Surgery and Nutrition, 2018, 7, 48-51.	0.7	3
96	Mutational signatures and processes in hepatobiliary cancers. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 367-382.	8.2	2
97	RNAi screening of subtracted transcriptomes reveals tumor suppression by taurine-activated GABAA receptors involved in volume regulation. PLoS ONE, 2018, 13, e0196979.	1.1	1
98	Therapeutic Rationale to Target Highly Expressed Aurora kinase A Conferring Poor Prognosis in Cholangiocarcinoma. Journal of Cancer, 2020, 11, 2241-2251.	1.2	1
99	The Altered Serum Lipidome and its Diagnostic Potential for Non-Alcoholic Fatty Liver (NAFL)-Associated Hepatocellular Carcinoma. SSRN Electronic Journal, 0, , .	0.4	1
100	Molecular therapeutic targets for cholangiocarcinoma: Present challenges and future possibilities. Advances in Cancer Research, 2022, , .	1.9	1
101	Advances in the molecular characterization of liver tumors. , 2017, , 133-138.e2.		0
102	Reply. Gastroenterology, 2018, 154, 260-261.	0.6	0
103	Therapeutic Potential of Pharmacoepigenetics in Cholangiocarcinoma. , 2019, , 551-562.		0
104	Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. Journal of Cell Biology, 2011, 194, i11-i11.	2.3	0
105	Stromal yinâ€yang of myofibroblasts and endothelial cells in the progression of intrahepatic cholangiocarcinoma. Hepatology, 2022, , .	3.6	0
106	Involvement of Epigenomic Factors in Bile Duct Cancer. Seminars in Liver Disease, 2022, 42, 202-211.	1.8	0