
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8023865/publications.pdf Version: 2024-02-01

KEVIN D YOUNG

#	Article	IF	CITATIONS
1	The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews, 2006, 70, 660-703.	2.9	801
2	<i>Escherichia coli</i> Mutants Lacking All Possible Combinations of Eight Penicillin Binding Proteins: Viability, Characteristics, and Implications for Peptidoglycan Synthesis. Journal of Bacteriology, 1999, 181, 3981-3993.	1.0	265
3	Bacterial morphology: why have different shapes?. Current Opinion in Microbiology, 2007, 10, 596-600.	2.3	216
4	Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. Journal of Bacteriology, 1993, 175, 6890-6901.	1.0	214
5	Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology (United Kingdom), 2013, 159, 402-410.	0.7	205
6	What determines cell size?. BMC Biology, 2012, 10, 101.	1.7	196
7	Penicillin Binding Protein 5 Affects Cell Diameter, Contour, and Morphology of Escherichia coli. Journal of Bacteriology, 2000, 182, 1714-1721.	1.0	176
8	Identification and Cloning of Genes Involved in Specific Desulfurization of Dibenzothiophene by <i>Rhodococcus</i> sp. Strain IGTS8. Applied and Environmental Microbiology, 1993, 59, 2837-2843.	1.4	169
9	Role of penicillin-binding proteins in bacterial cell morphogenesis. Current Opinion in Microbiology, 2003, 6, 594-599.	2.3	168
10	Contributions of PBP 5 and dd -Carboxypeptidase Penicillin Binding Proteins to Maintenance of Cell Shape in Escherichia coli. Journal of Bacteriology, 2001, 183, 3055-3064.	1.0	166
11	Bacterial shape. Molecular Microbiology, 2004, 49, 571-580.	1.2	162
12	Bacterial Shape: Two-Dimensional Questions and Possibilities. Annual Review of Microbiology, 2010, 64, 223-240.	2.9	122
13	Role of Peptidoglycan Amidases in the Development and Morphology of the Division Septum in Escherichia coli. Journal of Bacteriology, 2007, 189, 5334-5347.	1.0	111
14	Common β-lactamases inhibit bacterial biofilm formation. Molecular Microbiology, 2005, 58, 1012-1024.	1.2	105
15	Daughter Cell Separation by Penicillin-Binding Proteins and Peptidoglycan Amidases in Escherichia coli. Journal of Bacteriology, 2006, 188, 5345-5355.	1.0	101
16	FtsZ Collaborates with Penicillin Binding Proteins To Generate Bacterial Cell Shape in Escherichia coli. Journal of Bacteriology, 2004, 186, 6768-6774.	1.0	100
17	AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. Journal of Bacteriology, 1997, 179, 6112-6121.	1.0	97
18	Deadâ€end intermediates in the enterobacterial common antigen pathway induce morphological defects in <i>Escherichia coli</i> by competing for undecaprenyl phosphate. Molecular Microbiology, 2016, 100, 1-14.	1.2	97

#	Article	IF	CITATIONS
19	Escherichia coli and other species of the enterobacteriaceae encode a protein similar to the family of Mip-like FK506-binding proteins. Archives of Microbiology, 1995, 163, 357-365.	1.0	96
20	Interrupting Biosynthesis of O Antigen or the Lipopolysaccharide Core Produces Morphological Defects in Escherichia coli by Sequestering Undecaprenyl Phosphate. Journal of Bacteriology, 2016, 198, 3070-3079.	1.0	95
21	Lytic action of cloned phi X174 gene E. Journal of Virology, 1982, 44, 993-1002.	1.5	94
22	Branching of Escherichia coli Cells Arises from Multiple Sites of Inert Peptidoglycan. Journal of Bacteriology, 2003, 185, 1147-1152.	1.0	89
23	The Redundancy of Peptidoglycan Carboxypeptidases Ensures Robust Cell Shape Maintenance in Escherichia coli. MBio, 2016, 7, .	1.8	86
24	Endopeptidase Penicillin-Binding Proteins 4 and 7 Play Auxiliary Roles in Determining Uniform Morphology of Escherichia coli. Journal of Bacteriology, 2004, 186, 8326-8336.	1.0	82
25	FtsZ Directs a Second Mode of Peptidoglycan Synthesis in Escherichia coli. Journal of Bacteriology, 2007, 189, 5692-5704.	1.0	82
26	Septal and lateral wall localization of PBP5, the major D,D arboxypeptidase of <i>Escherichia coli,</i> requires substrate recognition and membrane attachment. Molecular Microbiology, 2010, 77, 300-323.	1.2	82
27	Deletion and fusion analysis of the phage φX174 lysis gene E. Gene, 1985, 40, 39-46.	1.0	81
28	The Rcs Stress Response and Accessory Envelope Proteins Are Required for <i>De Novo</i> Generation of Cell Shape in Escherichia coli. Journal of Bacteriology, 2013, 195, 2452-2462.	1.0	81
29	β-Lactam induction of colanic acid gene expression inEscherichia coli. FEMS Microbiology Letters, 2003, 226, 245-249.	0.7	77
30	Helical Disposition of Proteins and Lipopolysaccharide in the Outer Membrane of Escherichia coli. Journal of Bacteriology, 2005, 187, 1913-1922.	1.0	70
31	In <i>Escherichia coli</i> , MreB and FtsZ Direct the Synthesis of Lateral Cell Wall via Independent Pathways That Require PBP 2. Journal of Bacteriology, 2009, 191, 3526-3533.	1.0	70
32	ZipA Is Required for FtsZ-Dependent Preseptal Peptidoglycan Synthesis prior to Invagination during Cell Division. Journal of Bacteriology, 2012, 194, 5334-5342.	1.0	61
33	<i>Escherichia coli</i> lowâ€molecularâ€weight penicillinâ€binding proteins help orient septal FtsZ, and their absence leads to asymmetric cell division and branching. Molecular Microbiology, 2012, 84, 203-224.	1.2	60
34	Isolation and Amino Acid Sequence of a New 22-kDa FKBP-like Peptidyl-prolyl cis/trans-Isomerase of Escherichia coli. Journal of Biological Chemistry, 1996, 271, 22130-22138.	1.6	57
35	Identification and cloning of the gene encoding penicillin-binding protein 7 of Escherichia coli. Journal of Bacteriology, 1995, 177, 2074-2079.	1.0	55
36	Mutational analysis of slyD , an Escherichia coli gene encoding a protein of the FKBP immunophilin family. Molecular Microbiology, 1997, 25, 1031-1046.	1.2	55

#	Article	IF	CITATIONS
37	Eliminating a Set of Four Penicillin Binding Proteins Triggers the Rcs Phosphorelay and Cpx Stress Responses in Escherichia coli. Journal of Bacteriology, 2013, 195, 4415-4424.	1.0	55
38	Contribution of Membrane-Binding and Enzymatic Domains of Penicillin Binding Protein 5 to Maintenance of Uniform Cellular Morphology of Escherichia coli. Journal of Bacteriology, 2002, 184, 3630-3639.	1.0	54
39	Branching sites and morphological abnormalities behave as ectopic poles in shape-defective Escherichia coli. Molecular Microbiology, 2004, 52, 1045-1054.	1.2	52
40	The Min System as a General Cell Geometry Detection Mechanism: Branch Lengths in Y-Shaped <i>Escherichia coli</i> Cells Affect Min Oscillation Patterns and Division Dynamics. Journal of Bacteriology, 2008, 190, 2106-2117.	1.0	47
41	Isolation and identification of new inner membraneâ€associated proteins that localize to cell poles in <i>Escherichia coli</i> . Molecular Microbiology, 2012, 84, 276-295.	1.2	43
42	Colanic Acid Intermediates Prevent <i>De Novo</i> Shape Recovery of Escherichia coli Spheroplasts, Calling into Question Biological Roles Previously Attributed to Colanic Acid. Journal of Bacteriology, 2016, 198, 1230-1240.	1.0	43
43	Penicillin-binding proteins and induction of AmpC beta-lactamase. Antimicrobial Agents and Chemotherapy, 1997, 41, 2013-2015.	1.4	41
44	Reconstruction of Escherichia coli mrcA (PBP 1a) Mutants Lacking Multiple Combinations of Penicillin Binding Proteins. Journal of Bacteriology, 2001, 183, 6148-6149.	1.0	41
45	PBP1B Glycosyltransferase and Transpeptidase Activities Play Different Essential Roles during the <i>De Novo</i> Regeneration of Rod Morphology in Escherichia coli. Journal of Bacteriology, 2017, 199, .	1.0	41
46	Accumulation of periplasmic enterobactin impairs the growth and morphology of <i><scp>E</scp>scherichia coli</i> â€ <scp><i>tolC</i></scp> mutants. Molecular Microbiology, 2014, 91, 508-521.	1.2	40
47	Sequences near the Active Site in Chimeric Penicillin Binding Proteins 5 and 6 Affect Uniform Morphology of Escherichia coli. Journal of Bacteriology, 2003, 185, 2178-2186.	1.0	35
48	Approaching the physiological functions of penicillin-bindingproteins in Escherichia coli. Biochimie, 2001, 83, 99-102.	1.3	31
49	A weak dd-carboxypeptidase activity explains the inability of PBP 6 to substitute for PBP 5 in maintaining normal cell shape inEscherichia coli. FEMS Microbiology Letters, 2010, 303, 76-83.	0.7	27
50	Cell Sorting Enriches Escherichia coli Mutants That Rely on Peptidoglycan Endopeptidases To Suppress Highly Aberrant Morphologies. Journal of Bacteriology, 2013, 195, 855-866.	1.0	25
51	Lysis of Escherichia coli by beta-lactams which bind penicillin-binding proteins 1a and 1b: inhibition by heat shock proteins. Journal of Bacteriology, 1991, 173, 4021-4026.	1.0	24
52	A simple gel electrophoretic method for analyzing the muropeptide composition of bacterial peptidoglycan. Journal of Bacteriology, 1996, 178, 3962-3966.	1.0	24
53	Comparison of high-performance liquid chromatography and fluorophore-assisted carbohydrate electrophoresis methods for analyzing peptidoglycan composition of Escherichia coli. Analytical Biochemistry, 2004, 326, 1-12.	1.1	24
54	Identification and activity of two insertion sequence elements in rhodococcus sp. strain IGTS8. Gene, 1995, 161, 33-38.	1.0	23

#	Article	IF	CITATIONS
55	Unequal distribution of penicillin-binding proteins among inner membrane vesicles of Escherichia coli. Journal of Bacteriology, 1988, 170, 3660-3667.	1.0	19
56	Separation of Escherichia coli penicillin-binding proteins into different membrane vesicles by agarose electrophoresis and sizing chromatography. Journal of Bacteriology, 1989, 171, 5680-5686.	1.0	17
57	A new suite of tnaA mutants suggests that Escherichia coli tryptophanase is regulated by intracellular sequestration and by occlusion of its active site. BMC Microbiology, 2015, 15, 14.	1.3	17
58	Simultaneously inhibiting undecaprenyl phosphate production and peptidoglycan synthases promotes rapid lysis in <i>Escherichia coli</i> . Molecular Microbiology, 2019, 112, 233-248.	1.2	17
59	A cAMP-independent carbohydrate-driven mechanism inhibits tnaA expression and TnaA enzyme activity in Escherichia coli. Microbiology (United Kingdom), 2014, 160, 2079-2088.	0.7	16
60	Too many strictures on structure. Trends in Microbiology, 2006, 14, 155-156.	3.5	15
61	A Defective Undecaprenyl Pyrophosphate Synthase Induces Growth and Morphological Defects That Are Suppressed by Mutations in the Isoprenoid Pathway of Escherichia coli. Journal of Bacteriology, 2018, 200, .	1.0	14
62	Comparative analysis of Pseudomonas aeruginosa penicillin-binding protein 7 in the context of its membership in the family of low-molecular-mass PBPs. Microbiology (United Kingdom), 1998, 144, 975-983.	0.7	13
63	A flipping cell wall ferry. Science, 2014, 345, 139-140.	6.0	13
64	Making the Enterobacterial Common Antigen Glycan and Measuring Its Substrate Sequestration. ACS Chemical Biology, 2021, 16, 691-700.	1.6	13
65	Loss of O-antigen increases cell shape abnormalities in penicillin-binding protein mutants ofEscherichia coli. FEMS Microbiology Letters, 2006, 263, 252-257.	0.7	12
66	Sequence divergence of the murB and rrfB genes from Escherichia coli and Salmonella typhimurium. Archives of Microbiology, 1994, 161, 501-507.	1.0	9
67	Reforming L Forms: They Need Part of a Wall After All?. Journal of Bacteriology, 2007, 189, 6509-6511.	1.0	9
68	Why Spherical Escherichia coli Dies: the Inside Story. Journal of Bacteriology, 2008, 190, 1497-1498.	1.0	9
69	Escherichia coli and other species of the Enterobacteriaceae encode a protein similar to the family of Mip-like FK506-binding proteins. Archives of Microbiology, 1995, 163, 357-365.	1.0	8
70	Heterogeneity among membrane vesicles of Escherichia coli: Effects of production and fractionation techniques. Analytical Biochemistry, 1990, 184, 48-54.	1.1	5
71	YtfB, an OapA Domain-Containing Protein, Is a New Cell Division Protein in Escherichia coli. Journal of Bacteriology, 2018, 200, .	1.0	5
72	New Ways to Make Old Walls: Bacterial Surprises. Cell, 2010, 143, 1042-1044.	13.5	4

#	Article	IF	CITATIONS
73	Bacterial shape. Molecular Microbiology, 2003, 50, 723-723.	1.2	3
74	The bacterial cell wall takes centre stage. Nature, 2016, 537, 622-624.	13.7	3
75	6.9 Techniques for Analysis of Peptidoglycans. Methods in Microbiology, 1998, 27, 277-286.	0.4	1
76	Sequence divergence of the murB and rrfB genes from Escherichia coli and Salmonella typhimurium. Archives of Microbiology, 1994, 161, 501-507.	1.0	1
77	Effect of mecillinam on peptidoglycan synthesis during the division cycle of Salmonella typhimurium 2616. Research in Microbiology, 1993, 144, 423-433.	1.0	Ο
78	Unwrapping Bacteria. PLoS Genetics, 2014, 10, e1004054.	1.5	0