Wenhuan Bu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8023804/publications.pdf

Version: 2024-02-01

516710 610901 22 790 16 24 h-index citations g-index papers 25 25 25 1110 docs citations all docs times ranked citing authors

#	Article	lF	CITATIONS
1	Aspirin-Based Carbon Dots, a Good Biocompatibility of Material Applied for Bioimaging and Anti-Inflammation. ACS Applied Materials & Interfaces, 2016, 8, 32706-32716.	8.0	140
2	CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Experimental Cell Research, 2019, 378, 131-138.	2.6	119
3	A highly selective fluorescent sensor for Al ³⁺ and the use of the resulting complex as a secondary sensor for PPi in aqueous media: its applicability in live cell imaging. Dalton Transactions, 2015, 44, 11352-11359.	3.3	67
4	A highly specific pyrene-based fluorescent probe for hypochlorite and its application in cell imaging. Sensors and Actuators B: Chemical, 2015, 211, 164-169.	7.8	55
5	A colorimetric and fluorescent probe for multiple transition metal ions (Cu2+, Zn2+ and Ni2+): Fast response and high selectivity. Sensors and Actuators B: Chemical, 2015, 220, 463-471.	7.8	47
6	Ascorbic Acid-PEI Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance Bone Regeneration. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50287-50302.	8.0	40
7	Controllable acidophilic dual-emission fluorescent carbonized polymer dots for selective imaging of bacteria. Nanoscale, 2019, 11, 9526-9532.	5 . 6	36
8	Regulation of FN1 degradation by the p62/SQSTM1-dependent autophagy–lysosome pathway in HNSCC. International Journal of Oral Science, 2020, 12, 34.	8.6	32
9	Long non-coding RNA TIRY promotes tumor metastasis by enhancing epithelial-to-mesenchymal transition in oral cancer. Experimental Biology and Medicine, 2020, 245, 585-596.	2.4	30
10	Rational design of hydrogels for immunomodulation. International Journal of Energy Production and Management, 2022, 9, .	3.7	29
11	Osteopromotive carbon dots promote bone regeneration through the PERK-elF2α-ATF4 pathway. Biomaterials Science, 2020, 8, 2840-2852.	5.4	22
12	Preparation and characterization of silane-modified SiO2 particles reinforced resin composites with fluorinated acrylate polymer. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 11-19.	3.1	21
13	Bone mesenchymal stem cells are recruited via CXCL8â€CXCR2 and promote EMT through TGFâ€Î² signal pathways in oral squamous carcinoma. Cell Proliferation, 2020, 53, e12859.	5.3	21
14	Carbon Dots Induce Epithelialâ€Mesenchymal Transition for Promoting Cutaneous Wound Healing via Activation of TGFâ€Î²/p38/Snail Pathway. Advanced Functional Materials, 2020, 30, 2004886.	14.9	19
15	Modification of Metal-Organic Framework Nanoparticles Using Dental Pulp Mesenchymal Stem Cell Membranes to Target Oral Squamous Cell Carcinoma. Journal of Colloid and Interface Science, 2021, 601, 650-660.	9.4	19
16	Effective delivery of bone morphogenetic protein 2 gene using chitosan–polyethylenimine nanoparticle to promote bone formation. RSC Advances, 2016, 6, 34081-34089.	3.6	18
17	Synthesis, characterization and evaluation of a fluorinated resin monomer with low water sorption. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 446-454.	3.1	18
18	<p>Disulfiram inhibits epithelial–mesenchymal transition through TGFβ–ERK–Snail pathway independently of Smad4 to decrease oral squamous cell carcinoma metastasis</p> . Cancer Management and Research, 2019, Volume 11, 3887-3898.	1.9	16

#	Article	IF	CITATION
19	Bone formation promoted by bone morphogenetic protein-2 plasmid-loaded porous silica nanoparticles with the involvement of autophagy. Nanoscale, 2019, 11, 21953-21963.	5.6	15
20	Characteristics of three sizes of silica nanoparticles in the osteoblastic cell line, MC3T3-E1. RSC Advances, 2014, 4, 46481-46487.	3.6	11
21	Rapamycin promotes osteogenesis under inflammatory conditions. Molecular Medicine Reports, 2017, 16, 8923-8929.	2.4	10
22	Nanoparticles based on retinoic acid caped with ferrocenium: a novel synthesized targetable nanoparticle both with anti-cancer effect and drug loading capacity. RSC Advances, 2019, 9, 16208-16214.	3.6	2