Sandeep Kumar Malyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8023670/publications.pdf

Version: 2024-02-01

48 papers

2,574 citations

236925 25 h-index 36 g-index

48 all docs 48 docs citations

48 times ranked

2310 citing authors

#	Article	IF	Citations
1	Techno-economic feasibility and hurdles on agricultural waste management. , 2022, , 243-264.		O
2	Nitrogen and phosphorus management in cropland soils along with greenhouse gas (GHG) mitigation for nutrient management., 2022,, 341-372.		0
3	Greenhouse Gases Trade-Off from Ponds: An Overview of Emission Process and Their Driving Factors. Water (Switzerland), 2022, 14, 970.	2.7	17
4	Removal of Copper, Nickel, and Zinc Ions from an Aqueous Solution through Electrochemical and Nanofiltration Membrane Processes. Applied Sciences (Switzerland), 2022, 12, 280.	2.5	10
5	Appraisal of heavy metal pollution in the water resources of Western Uttar Pradesh, India and associated risks. Environmental Advances, 2022, 8, 100230.	4.8	19
6	Remediation strategies for mitigation of phthalate pollution: Challenges and future perspectives. Journal of Hazardous Materials, 2021, 409, 124496.	12.4	85
7	Bioelectroremediation technologies in remediation of environmental pollutants: challenges and future prospects., 2021,, 147-165.		1
8	Mechanistic overview of metal tolerance in edible plants: A physiological and molecular perspective., 2021,, 23-47.		8
9	Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere, 2021, 268, 128855.	8.2	120
10	Understanding Methanogens, Methanotrophs, and Methane Emission in Rice Ecosystem. , 2021, , 205-224.		1
11	Microbiological Removal of Heavy Metals from the Environment. , 2021, , 139-164.		2
12	Mitigation of yield-scaled greenhouse gas emissions from irrigated rice through Azolla, Blue-green algae, and plant growth–promoting bacteria. Environmental Science and Pollution Research, 2021, 28, 51425-51439.	5.3	30
13	Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. Chemosphere, 2021, 275, 129996.	8.2	87
14	Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. Water Environment Research, 2021, 93, 1882-1909.	2.7	23
15	Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere, 2021, 275, 129856.	8.2	98
16	Plummeting global warming potential by chemicals interventions in irrigated rice: A lab to field assessment. Agriculture, Ecosystems and Environment, 2021, 319, 107545.	5.3	14
17	Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renewable and Sustainable Energy Reviews, 2021, 149, 111379.	16.4	71
18	Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere, 2021, 284, 131325.	8.2	54

#	Article	IF	Citations
19	Bioelectrochemical systems for removal and recovery of heavy metals., 2021,, 185-203.		3
20	An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere, 2020, 242, 125080.	8.2	133
21	Industrial wastes: Fly ash, steel slag and phosphogypsum- potential candidates to mitigate greenhouse gas emissions from paddy fields. Chemosphere, 2020, 241, 124824.	8.2	44
22	Microalgal consortia for municipal wastewater treatment – Lipid augmentation and fatty acid profiling for biodiesel production. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111638.	3.8	84
23	Molecular and ecological perspectives of nitrous oxide producing microbial communities in agro-ecosystems. Reviews in Environmental Science and Biotechnology, 2020, 19, 717-750.	8.1	41
24	Cyanobacteria: A perspective paradigm for agriculture and environment., 2020,, 215-224.		5
25	Alkalinity and salinity favor bioelectricity generation potential of Clostridium, Tetrathiobacter and Desulfovibrio consortium in Microbial Fuel Cells (MFC) treating sulfate-laden wastewater. Bioresource Technology, 2020, 306, 123110.	9.6	47
26	Upgrading of microalgal consortia with CO2 from fermentation of wheat straw for the phycoremediation of domestic wastewater. Bioresource Technology, 2020, 305, 123063.	9.6	40
27	Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. International Journal of Environmental Research and Public Health, 2020, 17, 2179.	2.6	454
28	Global warming impacts of nitrogen use in agriculture: an assessment for India since 1960. Carbon Management, 2020, 11, 291-301.	2.4	29
29	Wastewater Treatment of Artificial Sugar Mill Effluent through Medicinal Plant Sweet Flag and Water Hyssop on Floating Wetland Systems. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 3266-3275.	0.1	O
30	Nitrous oxide emission and mitigation from maize–wheat rotation in the upper Indo-Gangetic Plains. Carbon Management, 2019, 10, 489-499.	2.4	24
31	Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel, 2019, 255, 115682.	6.4	88
32	An assessment of trace element contamination in groundwater aquifers of Saharanpur, Western Uttar Pradesh, India. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101213.	3.1	24
33	Mitigation of greenhouse gas intensity by supplementing with Azolla and moderating the dose of nitrogen fertilizer. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101266.	3.1	46
34	A comprehensive review on enzymatic degradation of the organophosphate pesticide malathion in the environment. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2019, 37, 288-329.	2.9	58
35	An overview of carcinogenic pollutants in groundwater of India. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101288.	3.1	54
36	Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel, 2019, 254, 115526.	6.4	186

#	Article	IF	CITATIONS
37	Ferrous sulfate as an in-situ anodic coagulant for enhanced bioelectricity generation and COD removal from landfill leachate. Energy, 2019, 176, 570-581.	8.8	42
38	Role of Fungi in Climate Change Abatement Through Carbon Sequestration. Fungal Biology, 2019, , 283-295.	0.6	20
39	Fungal Phytoremediation of Heavy Metal-Contaminated Resources: Current Scenario and Future Prospects. Fungal Biology, 2019, , 437-461.	0.6	50
40	Understanding Units of Measurement in Agricultural and Environmental Science. ESSENCE – International Journal for Environmental Rehabilitation and Conservation, 2018, 9, 45-51.	0.1	4
41	Performance of buffered ferric chloride as terminal electron acceptor in dual chamber microbial fuel cell. Journal of Environmental Chemical Engineering, 2017, 5, 1238-1243.	6.7	22
42	Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell. Environmental Science and Pollution Research, 2017, 24, 16019-16030.	5.3	61
43	Phytoremediation and Rhizoremediation: Uptake, Mobilization and Sequestration of Heavy Metals by Plants., 2017,, 367-394.		25
44	Effect of Water Management on Methane Emission from a Rice Soils. Indo Global Journal of Pharmaceutical Sciences, 2017, 07, .	0.5	0
45	Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Science of the Total Environment, 2016, 572, 874-896.	8.0	210
46	Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic plains: Through tillage, irrigation and fertilizer management. Agriculture, Ecosystems and Environment, 2016, 230, 1-9.	5.3	136
47	Impact of Nitrogen Fertilizers on Methane Emissions from Flooded Rice. Current World Environment Journal, 2016, 11, 846-850.	0.5	4
48	Impact of nitrogen fertilizers on methane emissions from flooded rice. International Journal of Agricultural Invention, 2016, 1, 124-128.	0.0	0