Stuart L Simpson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8023257/stuart-l-simpson-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

167 6,643 42 76 g-index

169 8,146 6.8 6.17 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
167	Detection of the Omicron (B.1.1.529) variant of SARS-CoV-2 in aircraft wastewater <i>Science of the Total Environment</i> , 2022 , 820, 153171	10.2	6
166	Evaluation of process limit of detection and quantification variation of SARS-CoV-2 RT-qPCR and RT-dPCR assays for wastewater surveillance <i>Water Research</i> , 2022 , 213, 118132	12.5	7
165	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. <i>Science of the Total Environment</i> , 2022 , 805, 149877	10.2	36
164	Organic carbon and salinity affect desorption of PFAS from estuarine sediments. <i>Journal of Soils and Sediments</i> , 2022 , 22, 1302-1314	3.4	0
163	Exposure duration and composition are important variables to predict short-term toxicity of effluents to a tropical copepod, Acartia sinjiensis <i>Environmental Pollution</i> , 2022 , 119012	9.3	O
162	Monitoring of SARS-CoV-2 in sewersheds with low COVID-19 cases using a passive sampling technique <i>Water Research</i> , 2022 , 218, 118481	12.5	2
161	Restoration of benthic macrofauna promotes biogeochemical remediation of hostile sediments; An in situ transplantation experiment in a eutrophic estuarine-hypersaline lagoon system <i>Science of the Total Environment</i> , 2022 , 155201	10.2	O
160	Application of digital PCR for public health-related water quality monitoring <i>Science of the Total Environment</i> , 2022 , 155663	10.2	1
159	RT-qPCR and ATOPlex sequencing for the sensitive detection of SARS-CoV-2 RNA for wastewater surveillance. <i>Water Research</i> , 2022 , 118621	12.5	1
158	Wildfires cause rapid changes to estuarine benthic habitat. Environmental Pollution, 2022, 119571	9.3	0
157	Loss of benthic macrofauna functional traits correlates with changes in sediment biogeochemistry along an extreme salinity gradient in the Coorong lagoon, Australia. <i>Marine Pollution Bulletin</i> , 2021 , 174, 113202	6.7	1
156	Metal forms and dynamics in urban stormwater runoff: New insights from diffusive gradients in thin-films (DGT) measurements <i>Water Research</i> , 2021 , 209, 117967	12.5	1
155	Sediment spiking and equilibration procedures to achieve partitioning of uranium similar to contamination in tropical wetlands near a mine-site <i>Environmental Pollution</i> , 2021 , 295, 118673	9.3	
154	Wastewater surveillance demonstrates high predictive value for COVID-19 infection on board repatriation flights to Australia. <i>Environment International</i> , 2021 , 158, 106938	12.9	5
153	Legacy Metal Contaminants and Excess Nutrients in Low Flow Estuarine Embayments Alter Composition and Function of Benthic Bacterial Communities. <i>Frontiers in Microbiology</i> , 2021 , 12, 66117	7 5.7	O
152	The Diffusive Gradients in Thin Films Technique Predicts Sediment Nickel Toxicity to the Amphipod Melita plumulosa. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 1266-1278	3.8	3
151	Short-Term Guideline Values for Chlorine in Freshwaters. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 1341-1352	3.8	O

150	In Situ DGT Sensing of Bioavailable Metal Fluxes to Improve Toxicity Predictions for Sediments. <i>Environmental Science & Environmental Science & Envir</i>	10.3	3
149	Antibiotic Resistance and Sewage-Associated Marker Genes in Untreated Sewage and a River Characterized During Baseflow and Stormflow. <i>Frontiers in Microbiology</i> , 2021 , 12, 632850	5.7	4
148	Occurrence of SARS-CoV-2 RNA in Six Municipal Wastewater Treatment Plants at the Early Stage of COVID-19 Pandemic in The United States. <i>Pathogens</i> , 2021 , 10,	4.5	8
147	Intraday variability of indicator and pathogenic viruses in 1-h and 24-h composite wastewater samples: Implications for wastewater-based epidemiology. <i>Environmental Research</i> , 2021 , 193, 110531	7.9	29
146	SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: A temporal case study. <i>Science of the Total Environment</i> , 2021 , 761, 144	2 ^{10.2}	85
145	Chronic effects and thresholds for estuarine and marine benthic organism exposure to perfluorooctane sulfonic acid (PFOS)-contaminated sediments: Influence of organic carbon and exposure routes. <i>Science of the Total Environment</i> , 2021 , 776, 146008	10.2	5
144	Application of a Multi-Metal Stable-Isotope-Enriched Bioassay to Assess Changes to Metal Bioavailability in Suspended Sediments. <i>Environmental Science & Environmental Scienc</i>	3 ^{10.3}	2
143	The effects of pulse exposures of metal toxicants on different life stages of the tropical copepod Acartia sinjiensis. <i>Environmental Pollution</i> , 2021 , 285, 117212	9.3	2
142	Variability in RT-qPCR assay parameters indicates unreliable SARS-CoV-2 RNA quantification for wastewater surveillance. <i>Water Research</i> , 2021 , 203, 117516	12.5	20
141	Comparative analysis of rapid concentration methods for the recovery of SARS-CoV-2 and quantification of human enteric viruses and a sewage-associated marker gene in untreated wastewater. <i>Science of the Total Environment</i> , 2021 , 799, 149386	10.2	7
140	Differentiating between the possibility and probability of SARS-CoV-2 transmission associated with wastewater: empirical evidence is needed to substantiate risk. <i>FEMS Microbes</i> , 2021 , 2,	0.8	13
139	Pulse-Exposure Toxicity of Ammonia and Propoxur to the Tropical Copepod Acartia sinjiensis. <i>Environmental Toxicology and Chemistry</i> , 2021 ,	3.8	1
138	Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. <i>Science of the Total Environment</i> , 2020 , 739, 139960	10.2	225
137	Sorption behaviour of per- and polyfluoroalkyl substances (PFASs) as affected by the properties of coastal estuarine sediments. <i>Science of the Total Environment</i> , 2020 , 720, 137263	10.2	17
136	Predicting chronic algal toxicity from 1- to 48-h pulsed exposures to mine site waters using time-averaged concentrations. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 192, 110263	7	6
135	Short-Term Guideline Values for Chlorine in Marine Waters. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 754-764	3.8	2
134	Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. <i>Environmental Research</i> , 2020 , 191, 110092	7.9	156
133	Surveillance of SARS-CoV-2 RNA in wastewater: Methods optimisation and quality control are crucial for generating reliable public health information. <i>Current Opinion in Environmental Science and Health</i> , 2020 , 17, 82-82	8.1	66

132	Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. <i>Journal of Travel Medicine</i> , 2020 , 27,	12.9	81
131	Improved prediction of sediment toxicity using a combination of sediment and overlying water contaminant exposures. <i>Environmental Pollution</i> , 2020 , 266, 115187	9.3	6
130	Remediation criteria for gasworks-impacted sediments: Assessing the effects of legacy hydrocarbons and more recent metal contamination. <i>Science of the Total Environment</i> , 2020 , 737, 13972	25 ^{10.2}	6
129	First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. <i>Science of the Total Environment</i> , 2020 , 728, 138764	10.2	829
128	Risks of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) for Sustainable Water Recycling via Aquifers. <i>Water (Switzerland)</i> , 2019 , 11, 1737	3	12
127	Application of diffusive gradients in thin films (DGT) and simultaneously extracted metals (SEM) for evaluating bioavailability of metal contaminants in the sediments of Taihu Lake, China. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 184, 109627	7	14
126	Bioturbation effects on metal release from contaminated sediments are metal-dependent. <i>Environmental Pollution</i> , 2019 , 250, 87-96	9.3	12
125	Using meta-omics of contaminated sediments to monitor changes in pathways relevant to climate regulation. <i>Environmental Microbiology</i> , 2019 , 21, 389-401	5.2	19
124	Comparative decay of sewage-associated marker genes in beach water and sediment in a subtropical region. <i>Water Research</i> , 2019 , 149, 511-521	12.5	39
123	The use of time-averaged concentrations of metals to predict the toxicity of pulsed complex effluent exposures to a freshwater alga. <i>Environmental Pollution</i> , 2018 , 238, 607-616	9.3	11
122	Effects of micronized and nano-copper azole on marine benthic communities. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 362-375	3.8	12
121	Changes in nutritional values induced by butachlor in juvenile diploid and triploid Clarias gariepinus. <i>International Journal of Environmental Science and Technology</i> , 2018 , 15, 2117-2128	3.3	1
120	Assisted natural recovery of hypersaline sediments: salinity thresholds for the establishment of a community of bioturbating organisms. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1244-12	2 5 3 ³	3
119	Scientific Considerations for the Assessment and Management of Mine Tailings Disposal in the Deep Sea. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	19
118	Decay of sewage-associated bacterial communities in fresh and marine environmental waters and sediment. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 7159-7170	5.7	9
117	Field and laboratory evaluation of DGT for predicting metal bioaccumulation and toxicity in the freshwater bivalve Hyridella australis exposed to contaminated sediments. <i>Environmental Pollution</i> , 2018 , 243, 862-871	9.3	20
116	Fate and dynamics of metal precipitates arising from acid drainage discharges to a river system. <i>Chemosphere</i> , 2018 , 212, 811-820	8.4	8
115	Contrasting effects of bioturbation on metal toxicity of contaminated sediments results in misleading interpretation of the AVS-SEM metal-sulfide paradigm. <i>Environmental Sciences:</i> Processes and Impacts, 2018 , 20, 1285-1296	4.3	7

(2016-2018)

114	Interactive effects of multiple stressors revealed by sequencing total (DNA) and active (RNA) components of experimental sediment microbial communities. <i>Science of the Total Environment</i> , 2018 , 637-638, 1383-1394	10.2	18
113	Uncovering hidden heterogeneity: Geo-statistical models illuminate the fine scale effects of boating infrastructure on sediment characteristics and contaminants. <i>Marine Pollution Bulletin</i> , 2017 , 119, 143-150	6.7	6
112	Effects of enhanced bioturbation intensities on the toxicity assessment of legacy-contaminated sediments. <i>Environmental Pollution</i> , 2017 , 226, 335-345	9.3	11
111	Metal Transfer among Organs Following Short- and Long-Term Exposures Using Autoradiography: Cadmium Bioaccumulation by the Freshwater Prawn Macrobrachium australiense. <i>Environmental Science & Environmental Science & Environmental Science & Environmental Science & Environmental & Envir</i>	10.3	17
110	Time-averaged concentrations are effective for predicting chronic toxicity of varying copper pulse exposures for two freshwater green algae species. <i>Environmental Pollution</i> , 2017 , 230, 787-797	9.3	17
109	Links between contaminant hotspots in low flow estuarine systems and altered sediment biogeochemical processes. <i>Estuarine, Coastal and Shelf Science</i> , 2017 , 198, 497-507	2.9	6
108	World Scientists Warning to Humanity: A Second Notice. <i>BioScience</i> , 2017 , 67, 1026-1028	5.7	563
107	Changes in nutritional parameters in diploid and triploid African catfish Clarias gariepinus following chlorpyrifos exposure. <i>Aquatic Biology</i> , 2017 , 26, 101-111	2	4
106	Diffusive Milli-Gels (DMG) for in situ assessment of metal bioavailability: A comparison with labile metal measurement using Chelex columns and acute toxicity to Ceriodaphnia dubia for copper in freshwaters. <i>Chemosphere</i> , 2016 , 164, 7-13	8.4	7
105	Alterations in juvenile diploid and triploid African catfish skin gelatin yield and amino acid composition: Effects of chlorpyrifos and butachlor exposures. <i>Environmental Pollution</i> , 2016 , 215, 170-1	7 73	8
104	Sub-lethal effects of water-based drilling muds on the deep-water sponge Geodia barretti. <i>Environmental Pollution</i> , 2016 , 212, 525-534	9.3	20
103	Assessing the Effects of Bioturbation on Metal Bioavailability in Contaminated Sediments by Diffusive Gradients in Thin Films (DGT). <i>Environmental Science & Environmental Sc</i>	10.3	61
102	Acute phenanthrene toxicity to juvenile diploid and triploid African catfish (Clarias gariepinus):	9.3	29
	Molecular, biochemical, and histopathological alterations. <i>Environmental Pollution</i> , 2016 , 212, 155-165	9.5	
101	Bioavailability and Chronic Toxicity of Metal Sulfide Minerals to Benthic Marine Invertebrates: Implications for Deep Sea Exploration, Mining and Tailings Disposal. <i>Environmental Science & Exploration and Tailings Disposal</i> . <i>Environmental Science & Technology</i> , 2016 , 50, 4061-70	10.3	53
101	Bioavailability and Chronic Toxicity of Metal Sulfide Minerals to Benthic Marine Invertebrates: Implications for Deep Sea Exploration, Mining and Tailings Disposal. <i>Environmental Science & Exploration and </i>		53 46
	Bioavailability and Chronic Toxicity of Metal Sulfide Minerals to Benthic Marine Invertebrates: Implications for Deep Sea Exploration, Mining and Tailings Disposal. <i>Environmental Science & Exploration of Sediment Science & Environmental Science </i>	10.3	
100	Bioavailability and Chronic Toxicity of Metal Sulfide Minerals to Benthic Marine Invertebrates: Implications for Deep Sea Exploration, Mining and Tailings Disposal. <i>Environmental Science & Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 4061-70 The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment. <i>Environmental Pollution</i> , 2016 , 208, 590-9	10.3	46

96	Challenges for using quantitative PCR test batteries as a TIE-type approach to identify metal exposure in benthic invertebrates. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 17280-9	5.1	2
95	The mismatch between bioaccumulation in field and laboratory environments: Interpreting the differences for metals in benthic bivalves. <i>Environmental Pollution</i> , 2015 , 204, 48-57	9.3	27
94	Time-averaged copper concentrations from continuous exposures predicts pulsed exposure toxicity to the marine diatom, Phaeodactylum tricornutum: Importance of uptake and elimination. <i>Aquatic Toxicology</i> , 2015 , 164, 1-9	5.1	24
93	Predictive modelling of pH and dissolved metal concentrations and speciation following mixing of acid drainage with river water. <i>Applied Geochemistry</i> , 2015 , 59, 1-10	3.5	23
92	Dietary ingestion of fine sediments and microalgae represent the dominant route of exposure and metal accumulation for Sydney rock oyster (Saccostrea glomerata): A biokinetic model for zinc. <i>Aquatic Toxicology</i> , 2015 , 167, 46-54	5.1	34
91	Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1345-53	3.8	21
90	Metal Fluxes from Porewaters and Labile Sediment Phases for Predicting Metal Exposure and Bioaccumulation in Benthic Invertebrates. <i>Environmental Science & Environmental Sci</i>	10.3	29
89	Bioaccumulation kinetics and organ distribution of cadmium and zinc in the freshwater decapod crustacean Macrobrachium australiense. <i>Environmental Science & Environmental Sc</i>	10.3	23
88	Importance of subcellular metal partitioning and kinetics to predicting sublethal effects of copper in two deposit-feeding organisms. <i>Environmental Science & Environmental S</i>	10.3	34
87	Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park. <i>PLoS ONE</i> , 2015 , 10, e0130537	3.7	19
86	A molecular-based approach for examining responses of eukaryotes in microcosms to contaminant-spiked estuarine sediments. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 359-69	3.8	43
85	Long-term copper partitioning of metal-spiked sediments used in outdoor mesocosms. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 7130-9	5.1	13
84	Challenges in understanding the sources of bioaccumulated metals in biota inhabiting turbid river systems. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 1960-1970	5.1	5
83	Dissolved and particulate copper exposure induces differing gene expression profiles and mechanisms of toxicity in the deposit feeding amphipod Melita plumulosa. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	20
82	Estuarine pollution of metals in China: science and mitigation. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	34
81	Diffusive gradients in thin films technique provide robust prediction of metal bioavailability and toxicity in estuarine sediments. <i>Environmental Science & Environmental Sci</i>	10.3	65
80	A biomarker of contaminant exposure is effective in large scale assessment of ten estuaries. <i>Chemosphere</i> , 2014 , 100, 16-26	8.4	43
79	Assessing mechanisms of toxicant response in the amphipod Melita plumulosa through transcriptomic profiling. <i>Aquatic Toxicology</i> , 2014 , 146, 247-57	5.1	30

78	Bioaccumulation and retention kinetics of cadmium in the freshwater decapod Macrobrachium australiense. <i>Aquatic Toxicology</i> , 2014 , 148, 174-83	5.1	18
77	454 pyrosequencing-based analysis of gene expression profiles in the amphipod Melita plumulosa: transcriptome assembly and toxicant induced changes. <i>Aquatic Toxicology</i> , 2014 , 153, 73-88	5.1	37
76	Comparing trace metal bioaccumulation characteristics of three freshwater decapods of the genus Macrobrachium. <i>Aquatic Toxicology</i> , 2014 , 152, 256-63	5.1	11
75	Faster, Higher and Stronger? The Pros and Cons of Molecular Faunal Data for Assessing Ecosystem Condition. <i>Advances in Ecological Research</i> , 2014 , 51, 1-40	4.6	24
74	Metal speciation and potential bioavailability changes during discharge and neutralisation of acidic drainage water. <i>Chemosphere</i> , 2014 , 103, 172-80	8.4	38
73	Incorporating bioavailability into management limits for copper in sediments contaminated by antifouling paint used in aquaculture. <i>Chemosphere</i> , 2013 , 93, 2499-506	8.4	36
72	Use of a novel sediment exposure to determine the effects of triclosan on estuarine benthic communities. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 384-92	3.8	16
71	Trace metals associated with deep-sea tailings placement at the Batu Hijau copper-gold mine, Sumbawa, Indonesia. <i>Marine Pollution Bulletin</i> , 2013 , 73, 306-13	6.7	19
70	Slow avoidance response to contaminated sediments elicits sublethal toxicity to benthic invertebrates. <i>Environmental Science & Environmental Science </i>	10.3	25
69	Demonstrating the appropriateness of developing sediment quality guidelines based on sediment geochemical properties. <i>Environmental Science & Environmental Science & Environ</i>	10.3	81
68	Beyond the bed: effects of metal contamination on recruitment to bedded sediments and overlying substrata. <i>Environmental Pollution</i> , 2013 , 173, 182-91	9.3	66
67	Challenges with tracing the fate and speciation of mine-derived metals in turbid river systems: implications for bioavailability. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 7803-14	5.1	12
66	Avoidance of contaminated sediments by an amphipod (Melita plumulosa), A harpacticoid copepod (Nitocra spinipes), and a snail (Phallomedusa solida). <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 644-52	3.8	19
65	Polychaete richness and abundance enhanced in anthropogenically modified estuaries despite high concentrations of toxic contaminants. <i>PLoS ONE</i> , 2013 , 8, e77018	3.7	33
64	The challenge of choosing environmental indicators of anthropogenic impacts in estuaries. <i>Environmental Pollution</i> , 2012 , 163, 207-17	9.3	83
63	Biology of a new species of socially parasitic thrips (Thysanoptera: Phlaeothripidae) inside Dunatothrips nests, with evolutionary implications for inquilinism in thrips. <i>Biological Journal of the Linnean Society</i> , 2012 , 107, 112-122	1.9	10
62	DGT-induced copper flux predicts bioaccumulation and toxicity to bivalves in sediments with varying properties. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	66
61	Sub-lethal effects of copper to benthic invertebrates explained by sediment properties and dietary exposure. <i>Environmental Science & Environmental Sc</i>	10.3	68

60	Oxidation of acid-volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melita plumulosa. <i>Chemosphere</i> , 2012 , 88, 953-61	8.4	72
59	Physico-chemical changes in metal-spiked sediments deployed in the field: implications for the interpretation of in situ studies. <i>Chemosphere</i> , 2011 , 83, 400-8	8.4	11
58	Guidelines for copper in sediments with varying properties. <i>Chemosphere</i> , 2011 , 85, 1487-95	8.4	46
57	An assessment of three harpacticoid copepod species for use in ecotoxicological testing. <i>Archives of Environmental Contamination and Toxicology</i> , 2011 , 61, 414-25	3.2	20
56	A short life-cycle test with the epibenthic copepod Nitocra spinipes for sediment toxicity assessment. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1430-9	3.8	24
55	The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 159	9 ³ 6810	76
54	Performance and sensitivity of rapid sublethal sediment toxicity tests with the amphipod Melita plumulosa and copepod Nitocra spinipes. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 2326-34	3.8	55
53	Influence of the choice of physical and chemistry variables on interpreting patterns of sediment contaminants and their relationships with estuarine macrobenthic communities. <i>Marine and Freshwater Research</i> , 2010 , 61, 1109	2.2	42
52	Spatial variability of cadmium, copper, manganese, nickel and zinc in the Port Curtis Estuary, Queensland, Australia. <i>Marine and Freshwater Research</i> , 2010 , 61, 170	2.2	22
51	Toxicity of metals to the bivalve Tellina deltoidalis and relationships between metal bioaccumulation and metal partitioning between seawater and marine sediments. <i>Archives of Environmental Contamination and Toxicology</i> , 2010 , 58, 657-65	3.2	21
50	A rapid amphipod reproduction test for sediment quality assessment: In situ bioassays do not replicate laboratory bioassays. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 2566-74	3.8	39
49	Toxicity to Melita plumulosa from intermittent and continuous exposures to dissolved copper. Environmental Toxicology and Chemistry, 2010 , 29, 2823-30	3.8	34
48	Climate-driven mobilisation of acid and metals from acid sulfate soils. <i>Marine and Freshwater Research</i> , 2010 , 61, 129	2.2	36
47	The Effect of Sediment Type and pH-Adjustment on the Porewater Chemistry of Copper- and Zinc-Spiked Sediments. <i>Soil and Sediment Contamination</i> , 2009 , 18, 55-73	3.2	10
46	Development of guidelines for ammonia in estuarine and marine water systems. <i>Marine Pollution Bulletin</i> , 2009 , 58, 1472-6	6.7	39
45	Development and application of a rapid amphipod reproduction test for sediment-quality assessment. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1244-54	3.8	35
44	Influence of sediment metal spiking procedures on copper bioavailability and toxicity in the estuarine bivalve Indoaustriella lamprelli. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1885-92	3.8	10
43	The influence of small-scale circum-neutral pH change on Cu-bioavailability and toxicity to an estuarine bivalve (Austriella cf plicifera) in whole-sediment toxicity tests. <i>Science of the Total Environment</i> , 2008 , 405, 87-95	10.2	3

(2005-2008)

42	Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. <i>Aquatic Toxicology</i> , 2008 , 89, 82-93	5.1	91
41	Cu and Zn concentration gradients created by dilution of pH neutral metal-spiked marine sediment: a comparison of sediment geochemistry with direct methods of metal addition. <i>Environmental Science & Comparison (March Model)</i> 2008, 42, 2912-8	10.3	38
40	Effect of nutrition on toxicity of contaminants to the epibenthic amphipod Melita plumulosa. <i>Archives of Environmental Contamination and Toxicology</i> , 2008 , 55, 593-602	3.2	38
39	Modifying tie methods to demonstrate dietary toxicity in whole-sediment toxicity tests. <i>Integrated Environmental Assessment and Management</i> , 2008 , 4, 371-372	2.5	2
38	Modifying tie methods to demonstrate dietary toxicity in whole-sediment toxicity tests. <i>Integrated Environmental Assessment and Management</i> , 2008 , 4, 371-2	2.5	
37	Predicting metal toxicity in sediments: A critique of current approaches. <i>Integrated Environmental Assessment and Management</i> , 2007 , 3, 18-31	2.5	145
36	Establishing cause-effect relationships in hydrocarbon-contaminated sediments using a sublethal response of the benthic marine alga, Entomoneis cf punctulata. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 163-70	3.8	12
35	In situ-based effects measures: considerations for improving methods and approaches. <i>Integrated Environmental Assessment and Management</i> , 2007 , 3, 246-58	2.5	46
34	Effects of light on microalgae concentrations and selenium uptake in bivalves exposed to selenium-amended sediments. <i>Archives of Environmental Contamination and Toxicology</i> , 2007 , 53, 365-7	03.2	5
33	The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments. <i>Chemosphere</i> , 2007 , 69, 1089-99	8.4	33
32	Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. <i>Chemosphere</i> , 2007 , 69, 1428-37	8.4	278
31	Predicting metal toxicity in sediments: a critique of current approaches. <i>Integrated Environmental Assessment and Management</i> , 2007 , 3, 18-31	2.5	19
30	Sensitivities of Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked sediments. <i>Chemosphere</i> , 2006 , 63, 1466-76	8.4	66
29	Application of surrogate methods for assessing the bioavailability of PAHs in sediments to a sediment ingesting bivalve. <i>Chemosphere</i> , 2006 , 65, 2401-10	8.4	15
28	A risk assessment approach to contaminants in Port Curtis, Queensland, Australia. <i>Marine Pollution Bulletin</i> , 2005 , 51, 448-58	6.7	49
27	Exposure-effect model for calculating copper effect concentrations in sediments with varying copper binding properties: a synthesis. <i>Environmental Science & Environmental Sc</i>	10.3	43
26	Exposure-pathway models explain causality in whole sediment toxicity tests. <i>Environmental Science & Environmental Science</i>	10.3	65
25	Bacterially Assisted Oxidation of Copper Sulfide Minerals in Tropical River Waters. <i>Environmental Chemistry</i> , 2005 , 2, 49	3.2	12

24	Short-term accumulation of Cd and Cu from water, sediment and algae by the amphipod Melita plumulosa and the bivalve Tellina deltoidalis. <i>Marine Ecology - Progress Series</i> , 2005 , 287, 177-188	2.6	50
23	An assessment of five Australian polychaetes and bivalves for use in whole-sediment toxicity tests: toxicity and accumulation of copper and zinc from water and sediment. <i>Archives of Environmental Contamination and Toxicology</i> , 2004 , 47, 314-23	3.2	51
22	Metal equilibration in laboratory-contaminated (spiked) sediments used for the development of whole-sediment toxicity tests. <i>Chemosphere</i> , 2004 , 54, 597-609	8.4	152
21	Processes controlling metal transport and retention as metal-contaminated groundwaters efflux through estuarine sediments. <i>Chemosphere</i> , 2004 , 56, 821-31	8.4	24
20	Effect of declining toxicant concentrations on algal bioassay endpoints. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 2073-9	3.8	23
19	Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 424-432	3.8	76
18	Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments 2003 , 22, 424		3
17	Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 424-32	3.8	6
16	Geochemical influences on metal partitioning in contaminated estuarine sediments. <i>Marine and Freshwater Research</i> , 2002 , 53, 9	2.2	43
15	Considerations for capping metal-contaminated sediments in dynamic estuarine environments. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	67
14	A rapid screening method for acid-volatile sulfide in sediments. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 2657-2661	3.8	82
13	Pyrocatechol Violet Complexation at the Boehmite-Water Interface. <i>Journal of Colloid and Interface Science</i> , 2000 , 229, 568-574	9.3	10
12	Competitive displacement reactions of cadmium, copper, and zinc added to a polluted, sulfidic estuarine sediment. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 1992-1999	3.8	74
11	Effect of Short-Term Resuspension Events on the Oxidation of Cadmium, Lead, and Zinc Sulfide Phases in Anoxic Estuarine Sediments. <i>Environmental Science & Environmental Scie</i>	10.3	114
10	Kinetic and thermodynamic considerations in the determination of aluminium using pyrocatechol violet: implications for the use of [kinetic-based' determinations of metal ions in natural systems. <i>Analytica Chimica Acta</i> , 1998 , 359, 329-340	6.6	16
9	An evaluation of copper remobilization from mine tailings in sulfidic environments. <i>Journal of Geochemical Exploration</i> , 1998 , 63, 203-215	3.8	8
8	Sample storage artifacts affecting the measurement of dissolved copper in sulfidic waters. <i>Analytical Chemistry</i> , 1998 , 70, 4202-5	7.8	17
7	Effect of Short-Term Resuspension Events on Trace Metal Speciation in Polluted Anoxic Sediments. <i>Environmental Science & Environmental Science & Envi</i>	10.3	260

LIST OF PUBLICATIONS

6	Flow injection determination of Al3+ and Al13O4(OH)24(H2O)127+ species using a 1.3-s reaction with 8-quinolinol-derivatised Fractogel. <i>Analytica Chimica Acta</i> , 1997 , 343, 19-32	6.6	31
5	The aluminium(III)-4-nitrocatechol system: potentiometry, voltammetry and application to the determination of reactive Al(III). <i>Analytica Chimica Acta</i> , 1997 , 345, 5-15	6.6	30
4	Equilibrium modelling of interferences in the visible spectrophotometric determination of aluminium(III): Comparison of the chromophores chrome azurol S, eriochrome cyanine R and pyrocatechol violet, and stability constants for eriochrome cyanine R-aluminium complexes.	6.6	19
3	Analytica Chimica Acta, 1996, 319, 305-314 Aluminium(III)pyrocatechol violet equilibria: a potentiometric study. Journal of the Chemical Society Dalton Transactions, 1995, 1799-1804		17
2	Comparison of RT-qPCR and RT-dPCR Platforms for the Trace Detection of SARS-CoV-2 RNA in Wastewater. <i>ACS ES&T Water</i> ,		8
1	In Situ Calibration of Passive Samplers for Viruses in Wastewater. ACS ES&T Water,		1