
Katarzyna Piwocka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/802318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of senescence with doxorubicin leads to increased genomic instability of HCT116 cells. Mechanisms of Ageing and Development, 2009, 130, 24-32.	2.2	150
2	A Novel Apoptosis-like Pathway, Independent of Mitochondria and Caspases, Induced by Curcumin in Human Lymphoblastoid T (Jurkat) Cells. Experimental Cell Research, 1999, 249, 299-307.	1.2	126
3	Inhibition of proliferation and apoptosis of human and rat T lymphocytes by curcumin, a curry pigment. Biochemical Pharmacology, 1997, 54, 899-907.	2.0	101
4	Curcumin Affects Components of the Chromosomal Passenger Complex and Induces Mitotic Catastrophe in Apoptosis-Resistant Bcr-Abl-Expressing Cells. Molecular Cancer Research, 2006, 4, 457-469.	1.5	83
5	Curcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated DNase endonuclease in human Jurkat cells. Molecular Cancer Therapeutics, 2006, 5, 927-934.	1.9	74
6	Effect of glutathione depletion on caspase-3 independent apoptosis pathway induced by curcumin in Jurkat cells. Free Radical Biology and Medicine, 2001, 31, 670-678.	1.3	71
7	Early loss of proliferative potential of human peritoneal mesothelial cells in culture: the role of p16INK4a-mediated premature senescence. Journal of Applied Physiology, 2006, 100, 988-995.	1.2	64
8	ESCRT proteins restrict constitutive NF-κB signaling by trafficking cytokine receptors. Science Signaling, 2016, 9, ra8.	1.6	64
9	Ruxolitinib-induced defects in DNA repair cause sensitivity to PARP inhibitors in myeloproliferative neoplasms. Blood, 2017, 130, 2848-2859.	0.6	64
10	Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. Journal of Clinical Investigation, 2017, 127, 2392-2406.	3.9	64
11	Tunneling nanotube-mediated intercellular vesicle and protein transfer in the stroma-provided imatinib resistance in chronic myeloid leukemia cells. Cell Death and Disease, 2019, 10, 817.	2.7	59
12	The PERK-eIF2α phosphorylation arm is a pro-survival pathway of BCR-ABL signaling and confers resistance to imatinib treatment in chronic myeloid leukemia cells. Cell Cycle, 2012, 11, 4069-4078.	1.3	58
13	Tyrosine kinase inhibitor–induced defects in DNA repair sensitize FLT3(ITD)-positive leukemia cells to PARP1 inhibitors. Blood, 2018, 132, 67-77.	0.6	54
14	Downregulation of BRCA1 protein in BCR-ABL1 leukemia cells depends on stress-triggered TIAR-mediated suppression of translation. Cell Cycle, 2014, 13, 3727-3741.	1.3	52
15	Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms. Free Radical Biology and Medicine, 2012, 52, 2234-2245.	1.3	50
16	P-glycoprotein expression does not change the apoptotic pathway induced by curcumin in HL-60 cells. Cancer Chemotherapy and Pharmacology, 2004, 53, 179-185.	1.1	46
17	Effect of Curcumin on the Apoptosis of Rodent and Human Nonproliferating and Proliferating Lymphoid Cells. Nutrition and Cancer, 2000, 38, 131-138.	0.9	45
18	Bafilomycin A1 triggers proliferative potential of senescent cancer cells <i>in vitro</i> and in NOD/SCID mice. Oncotarget, 2017, 8, 9303-9322.	0.8	40

KATARZYNA PIWOCKA

#	Article	IF	CITATIONS
19	Senescent peritoneal mesothelium creates a niche for ovarian cancer metastases. Cell Death and Disease, 2016, 7, e2565-e2565.	2.7	39
20	Glutathione-independent mechanism of apoptosis inhibition by curcumin in rat thymocytes. Biochemical Pharmacology, 1998, 56, 961-965.	2.0	38
21	Curcumin Induces Caspaseâ€3â€Independent Apoptosis in Human Multidrugâ€Resistant Cells. Annals of the New York Academy of Sciences, 2002, 973, 250-254.	1.8	38
22	Bcr-Abl reduces endoplasmic reticulum releasable calcium levels by a Bcl-2–independent mechanism and inhibits calcium-dependent apoptotic signaling. Blood, 2006, 107, 4003-4010.	0.6	32
23	Bystander senescence in human peritoneal mesothelium and fibroblasts is related to thrombospondin-1-dependent activation of transforming growth factor-β1. International Journal of Biochemistry and Cell Biology, 2013, 45, 2087-2096.	1.2	32
24	The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
25	Synthetic lethality between <i> <scp>VPS</scp> 4A </i> and <i> <scp>VPS</scp> 4B </i> triggers an inflammatory response in colorectal cancer. EMBO Molecular Medicine, 2020, 12, e10812.	3.3	28
26	Expression of Oncogenic Kinase Bcr-Abl Impairs Mitotic Checkpoint and Promotes Aberrant Divisions and Resistance to Microtubule-Targeting Agents. Molecular Cancer Therapeutics, 2010, 9, 1328-1338.	1.9	27
27	Curcumin abolishes apoptosis resistance of calcitriol-differentiated HL-60 cells. FEBS Letters, 2006, 580, 4653-4660.	1.3	26
28	<i>TET2</i> and <i>DNMT3A</i> Mutations Exert Divergent Effects on DNA Repair and Sensitivity of Leukemia Cells to PARP Inhibitors. Cancer Research, 2021, 81, 5089-5101.	0.4	25
29	MLL-AF9 leukemias are sensitive to PARP1 inhibitors combined with cytotoxic drugs. Blood Advances, 2017, 1, 1467-1472.	2.5	23
30	Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. Genome Research, 2019, 29, 506-519.	2.4	21
31	Role of annexin A6 isoforms in catecholamine secretion by PC12 cells: Distinct influence on calcium response. Journal of Cellular Biochemistry, 2010, 111, 168-178.	1.2	20
32	IGH/MYC Translocation Associates with BRCA2 Deficiency and Synthetic Lethality to PARP1 Inhibitors. Molecular Cancer Research, 2017, 15, 967-972.	1.5	20
33	SYK inhibition targets acute myeloid leukemia stem cells by blocking their oxidative metabolism. Cell Death and Disease, 2020, 11, 956.	2.7	20
34	Low Interleukin - 8 Level Predicts the Occurrence of the Postpericardiotomy Syndrome. PLoS ONE, 2014, 9, e108822.	1.1	20
35	Synthetic Resveratrol Analogue, 3,3',4,4',5,5'-Hexahydroxy-trans-Stilbene, Accelerates Senescence in Peritoneal Mesothelium and Promotes Senescence-Dependent Growth of Gastrointestinal Cancers. International Journal of Molecular Sciences, 2013, 14, 22483-22498.	1.8	19
36	Isolation of vascular endothelial cells from intact and injured murine brain cortex—technical issues and pitfalls in <scp>FACS</scp> analysis of the nervous tissue. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 908-920.	1.1	19

3

KATARZYNA PIWOCKA

#	Article	IF	CITATIONS
37	High Potency of a Novel Resveratrol Derivative, 3,3′,4,4′-Tetrahydroxy- <i>trans</i> -stilbene, against Ovarian Cancer Is Associated with an Oxidative Stress-Mediated Imbalance between DNA Damage Accumulation and Repair. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-15.	1.9	19
38	Autocrine secretion of osteopontin results in degradation of IkappaB in Bcr-Abl-expressing cells. British Journal of Haematology, 2005, 128, 711-721.	1.2	18
39	TGFβR-SMAD3 Signaling Induces Resistance to PARP Inhibitors in the Bone Marrow Microenvironment. Cell Reports, 2020, 33, 108221.	2.9	18
40	Immunosuppressive Cell Subsets and Factors in Myeloid Leukemias. Cancers, 2021, 13, 1203.	1.7	16
41	Increased phosphorylation of eIF2α in chronic myeloid leukemia cells stimulates secretion of matrix modifying enzymes. Oncotarget, 2016, 7, 79706-79721.	0.8	16
42	Transcriptome profile of the sinoatrial ring reveals conserved and novel genetic programs of the zebrafish pacemaker. BMC Genomics, 2021, 22, 715.	1.2	14
43	Increased acetylation of lysine 317/320 of p53 caused by BCR-ABL protects from cytoplasmic translocation of p53 and mitochondria-dependent apoptosis in response to DNA damage. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 950-963.	2.2	13
44	4-1BBL–containing leukemic extracellular vesicles promote immunosuppressive effector regulatory T cells. Blood Advances, 2022, 6, 1879-1894.	2.5	13
45	Transient MicroRNA Expression Enhances Myogenic Potential of Mouse Embryonic Stem Cells. Stem Cells, 2018, 36, 655-670.	1.4	12
46	Non-NAD-like PARP1 inhibitor enhanced synthetic lethal effect of NAD-like PARP inhibitors against BRCA1-deficient leukemia. Leukemia and Lymphoma, 2019, 60, 1098-1101.	0.6	12
47	Concurrent depletion of Vps37 proteins evokes ESCRT-I destabilization and profound cellular stress responses. Journal of Cell Science, 2021, 134, .	1.2	12
48	The Role of Nibrin in Doxorubicin-Induced Apoptosis and Cell Senescence in Nijmegen Breakage Syndrome Patients Lymphocytes. PLoS ONE, 2014, 9, e104964.	1.1	11
49	Inhibition of PCAF by Anacardic Acid Derivative Leads to Apoptosis and Breaks Resistance to DNA Damage in BCR-ABL-expressing Cells. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 762-767.	0.9	11
50	Stimulators of Mineralization Limit the Invasive Phenotype of Human Osteosarcoma Cells by a Mechanism Involving Impaired Invadopodia Formation. PLoS ONE, 2014, 9, e109938.	1.1	9
51	PARP1 inhibitor eliminated imatinib-refractory chronic myeloid leukemia cells in bone marrow microenvironment conditions. Leukemia and Lymphoma, 2019, 60, 262-264.	0.6	9
52	Isolation and Characterization of Extracellular Vesicles from Cell Culture Conditioned Medium for Immunological Studies. Current Protocols in Immunology, 2020, 129, e96.	3.6	8
53	Splicing variation of BMP2K balances abundance of COPII assemblies and autophagic degradation in erythroid cells. ELife, 2020, 9, .	2.8	8
54	Characteristics of live parameters of the HSâ€5 human bone marrow stromal cell line cocultured with the leukemia cells in hypoxia, for the studies of leukemia–stroma crossâ€ŧalk. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 929-940.	1.1	6

KATARZYNA PIWOCKA

#	Article	IF	CITATIONS
55	Chronic myeloid leukemiaâ€derived extracellular vesicles increase Foxp3 level and suppressive activity of thymic regulatory T cells. European Journal of Immunology, 2020, 50, 606-609.	1.6	6
56	Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region. Cellular and Molecular Life Sciences, 2021, 78, 6669-6687.	2.4	6
57	Multi-omics analyses of early liver injury reveals cell-type-specific transcriptional and epigenomic shift. BMC Genomics, 2021, 22, 904.	1.2	6
58	Tunneling Nanotubes Facilitate Intercellular Protein Transfer and Cell Networks Function. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
59	Interleukin 4 Moderately Affects Competence of Pluripotent Stem Cells for Myogenic Conversion. International Journal of Molecular Sciences, 2019, 20, 3932.	1.8	3
60	IDH2 mutations in patients with normal karyotype AML predict favorable responses to daunorubicin, cytarabine and cladribine regimen. Scientific Reports, 2021, 11, 10017.	1.6	3
61	Stress granules assembly affects detection of mRNA in living cells by the NanoFlares; an important aspect of the technology. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1024-1035.	1.1	2
62	Comparison of Differentiation Pattern and WNT/SHH Signaling in Pluripotent Stem Cells Cultured under Different Conditions. Cells, 2021, 10, 2743.	1.8	2
63	New developments in cytometric phenotyping. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 950-951.	1.1	1
64	Insight into the Leukemia Microenvironment and Cell-cell Interactions Using Flow Cytometry. , 0, , .		1
65	IGH/MYC Translocation in Burkitt Lymphoma Is Associated with BRCA2 Deficiency and Synthetic Lethality By PARP1 Inhibitors. Blood, 2016, 128, 4111-4111.	0.6	1
66	BCR-ABL Hits at Mitosis; Implications for Chromosomal Instability, Aneuploidy and Therapeutic Strategy. , 0, , .		1
67	<i>TET2</i> and <i>DNMT3A</i> Mutations Exert Divergent Effects on DNA Repair and Sensitivity of Leukemia Cells to PARP Inhibitors. Blood, 2020, 136, 4-4.	0.6	1
68	When polychromatic flow cytometry meets mitochondrial reactive oxygen species. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 1052-1053.	1.1	0
69	Targeting of Post-Transcriptional Regulation as Treatment Strategy in Acute Leukemia. , 0, , .		Ο
70	OTME-2. Regulation of chromatin accessibility in the hypoxic tumor microenvironment of glioblastoma. Neuro-Oncology Advances, 2021, 3, ii13-ii13.	0.4	0
71	A Novel Bcr-Abl Mediated Pro-Survival Pathway: Reduction of Releasable Calcium Levels in the Endoplasmic Reticulum Inhibits Calcium Dependent Apoptotic Signaling Blood, 2005, 106, 2621-2621.	0.6	0
72	Downregulation of BRCA1 Protein in BCR-ABL1–positive Cells Depends on Tiar-Mediated Repression of BRCA1 mRNA Translation. Blood, 2014, 124, 3129-3129.	0.6	0

#	Article	IF	CITATIONS
73	PARP1 Inhibitors Eliminated Imatinib-Refractory Chronic Myeloid Leukemia Cells in Bone Marrow Microenvironment Conditions. Blood, 2018, 132, 3000-3000.	0.6	0
74	BRCA1 deficiency and synthetic lethality in leukemias; not only gene mutation matters. Postepy Biochemii, 2018, 64, 141-147.	0.5	0