
## Andreas Wacker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8023048/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nonresonant two-level transitions: Insights from quantum thermodynamics. Physical Review A, 2022, 105, .                                                                                     | 1.0 | 3         |
| 2  | Heat Driven Transport in Serial Double Quantum Dot Devices. Nano Letters, 2021, 21, 988-994.                                                                                                 | 4.5 | 18        |
| 3  | Positivity of entropy production for the three-level maser. Physical Review A, 2021, 103, .                                                                                                  | 1.0 | 7         |
| 4  | Violating the thermodynamic uncertainty relation in the three-level maser. Physical Review E, 2021, 104, L012103.                                                                            | 0.8 | 37        |
| 5  | Chaotic behavior of quantum cascade lasers at ignition. Communications in Nonlinear Science and Numerical Simulation, 2021, 103, 105952.                                                     | 1.7 | 4         |
| 6  | A thermodynamically consistent Markovian master equation beyond the secular approximation. New<br>Journal of Physics, 2021, 23, 123013.                                                      | 1.2 | 21        |
| 7  | Field-resolved high-order sub-cycle nonlinearities in a terahertz semiconductor laser. Light: Science and Applications, 2021, 10, 246.                                                       | 7.7 | 10        |
| 8  | Estimating the SARS-CoV-2 infected population fraction and the infection-to-fatality ratio: a data-driven case study based on Swedish time series data. Scientific Reports, 2021, 11, 23963. | 1.6 | 2         |
| 9  | Electron extraction from excited quantum dots with higher order coulomb scattering. Journal of Physics Communications, 2020, 4, 035011.                                                      | 0.5 | 0         |
| 10 | Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Applied Physics Letters, 2019, 115, .                                                                             | 1.5 | 178       |
| 11 | Domain formation and self-sustained oscillations in quantum cascade lasers. European Physical<br>Journal B, 2019, 92, 1.                                                                     | 0.6 | 5         |
| 12 | Quantifying the impact of phonon scattering on electrical and thermal transport in quantum dots.<br>European Physical Journal: Special Topics, 2019, 227, 1959-1967.                         | 1.2 | 2         |
| 13 | THz Quantum Cascade Lasers Operating up to 210 K. , 2019, , .                                                                                                                                |     | 0         |
| 14 | Quantum Szilard Engine with Attractively Interacting Bosons. Physical Review Letters, 2018, 120, 100601.                                                                                     | 2.9 | 46        |
| 15 | Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Physical<br>Review B, 2018, 97, .                                                                      | 1.1 | 45        |
| 16 | Two-well quantum cascade laser optimization by non-equilibrium Green's function modelling. Applied<br>Physics Letters, 2018, 112, .                                                          | 1.5 | 53        |
| 17 | lgnition of quantum cascade lasers in a state of oscillating electric field domains. Physical Review A,<br>2018, 98, .                                                                       | 1.0 | 15        |
| 18 | QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices. Computer Physics Communications, 2017, 221, 317-342.                                      | 3.0 | 16        |

| #  | Article                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Theory and measurements of harmonic generation in semiconductor superlattices with applications in the 100 GHz to 1 THz range. Physical Review B, 2017, 96, . | 1.1 | 52        |
| 20 | Two-dimensional action spectroscopy of excitonic systems: Explicit simulation using a phase-modulation technique. Physical Review A, 2017, 96, .              | 1.0 | 29        |
| 21 | Simulating terahertz quantum cascade lasers: Trends from samples from different labs. Journal of<br>Applied Physics, 2016, 120, .                             | 1.1 | 14        |
| 22 | Optimization schemes for efficient multiple exciton generation and extraction in colloidal quantum dots. Journal of Chemical Physics, 2016, 145, 064703.      | 1.2 | 11        |
| 23 | Nonlinear thermoelectric efficiency of superlattice-structured nanowires. Physical Review B, 2016, 94,                                                        | 1.1 | 30        |
| 24 | Violation of Onsager's theorem in approximate master equation approaches. Physical Review B, 2016,<br>94, .                                                   | 1.1 | 11        |
| 25 | Transport in serial spinful multiple-dot systems: The role of electron-electron interactions and coherences. Scientific Reports, 2016, 6, 22761.              | 1.6 | 12        |
| 26 | Thermopower signatures and spectroscopy of the canyon of conductance suppression. Physical Review B, 2016, 94, .                                              | 1.1 | 2         |
| 27 | Superlattice gain in positive differential conductivity region. AIP Advances, 2016, 6, .                                                                      | 0.6 | 9         |
| 28 | Simple electron-electron scattering in non-equilibrium Green's function simulations. Journal of<br>Physics: Conference Series, 2016, 696, 012013.             | 0.3 | 28        |
| 29 | Time Dependent Study of Multiple Exciton Generation in Nanocrystal Quantum Dots. Journal of<br>Physics: Conference Series, 2016, 696, 012012.                 | 0.3 | 3         |
| 30 | Influence of interface roughness in quantum cascade lasers. Journal of Applied Physics, 2015, 118, 114501.                                                    | 1.1 | 19        |
| 31 | Impact of interface roughness distributions on the operation of quantum cascade lasers. Optics<br>Express, 2015, 23, 5201.                                    | 1.7 | 35        |
| 32 | Designing <i>Ï€</i> -stacked molecular structures to control heat transport through molecular<br>junctions. Applied Physics Letters, 2014, 105, .             | 1.5 | 32        |
| 33 | Thermopower as a tool to investigate many-body effects in quantum systems. Applied Physics Letters, 2014, 105, 083105.                                        | 1.5 | 2         |
| 34 | Temperature dependent nonlinear response of quantum cascade structures. Optical and Quantum<br>Electronics, 2014, 46, 533-539.                                | 1.5 | 2         |
| 35 | Free carrier absorption and inter-subband transitions in imperfect heterostructures. Semiconductor<br>Science and Technology, 2014, 29, 023001.               | 1.0 | 8         |
| 36 | Microscopic approach to second harmonic generation in quantum cascade lasers. Optics Express, 2014, 22, 18389.                                                | 1.7 | 7         |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Absorption in disordered heterostructures: Contributions from intra- and inter-subband scattering and impact of localised states. , 2014, , .                                                |     | Ο         |
| 38 | Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green's functions. Applied Physics Letters, 2014, 105, .                                | 1.5 | 44        |
| 39 | One-dimensional massless Dirac bands in semiconductor superlattices. Physical Review B, 2014, 89, .                                                                                          | 1.1 | 2         |
| 40 | An indirectly pumped terahertz quantum cascade laser with low injection coupling strength<br>operating above 150 K. Journal of Applied Physics, 2013, 113, .                                 | 1.1 | 28        |
| 41 | Injection schemes in THz quantum cascade lasers under operation. Proceedings of SPIE, 2013, , .                                                                                              | 0.8 | 10        |
| 42 | Nonequilibrium Green's Function Model for Simulation of Quantum Cascade Laser Devices Under<br>Operating Conditions. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1-11. | 1.9 | 87        |
| 43 | A diagrammatic description of the equations of motion, current and noise within the second-order von Neumann approach. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 065301. | 0.7 | 18        |
| 44 | Dopant Engineering of Inter-Subband Linewidth and Lineshape in Multiwell Heterostructures. Applied<br>Physics Express, 2013, 6, 094101.                                                      | 1.1 | 10        |
| 45 | Total Current Blockade in an Ultracold Dipolar Quantum Wire. Physical Review Letters, 2013, 110,<br>085303.                                                                                  | 2.9 | 15        |
| 46 | Heat flow in InAs/InP heterostructure nanowires. Physical Review B, 2012, 86, .                                                                                                              | 1.1 | 11        |
| 47 | Cotunneling renormalization in carbon nanotube quantum dots. Physical Review B, 2012, 86, .                                                                                                  | 1.1 | 5         |
| 48 | Terahertz Quantum Cascade Lasers Based on Phonon Scattering Assisted Injection and Extraction. ,<br>2012, , .                                                                                |     | 1         |
| 49 | Nonlinear response of quantum cascade structures. Applied Physics Letters, 2012, 101, .                                                                                                      | 1.5 | 18        |
| 50 | A phonon scattering assisted injection and extraction based terahertz quantum cascade laser. Journal of Applied Physics, 2012, 111, .                                                        | 1.1 | 58        |
| 51 | Relevance of intra- and inter-subband scattering on the absorption in heterostructures. Applied<br>Physics Letters, 2012, 101, 191104.                                                       | 1.5 | 11        |
| 52 | Free-carrier absorption in quantum cascade structures. Physical Review B, 2012, 85, .                                                                                                        | 1.1 | 30        |
| 53 | Unraveling of free-carrier absorption for terahertz radiation in heterostructures. Physical Review B, 2011, 84, .                                                                            | 1.1 | 16        |
| 54 | Canyon of current suppression in an interacting two-level quantum dot. Physical Review B, 2011, 83, .                                                                                        | 1.1 | 19        |

4

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Signatures of Wigner localization in epitaxially grown nanowires. Physical Review B, 2011, 83, .                                                                                                                     | 1.1 | 28        |
| 56 | Increasing thermoelectric performance using coherent transport. Physical Review B, 2011, 84, .                                                                                                                       | 1.1 | 168       |
| 57 | Acoustic Phonons in Nanowires with Embedded Heterostructures. Journal of Nanomaterials, 2011, 2011, 1-7.                                                                                                             | 1.5 | 3         |
| 58 | Modeling of cotunneling in quantum dot systems. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 595-599.                                                                                            | 1.3 | 24        |
| 59 | Correlation-Induced Conductance Suppression at Level Degeneracy in a Quantum Dot. Physical Review<br>Letters, 2010, 104, 186804.                                                                                     | 2.9 | 52        |
| 60 | Extraction-controlled quantum cascade lasers. Applied Physics Letters, 2010, 97, .                                                                                                                                   | 1.5 | 39        |
| 61 | Probing Confined Phonon Modes by Transport through a Nanowire Double Quantum Dot. Physical<br>Review Letters, 2010, 104, 036801.                                                                                     | 2.9 | 50        |
| 62 | Temperature dependence and screening models in quantum cascade structures. Journal of Applied Physics, 2009, 106, .                                                                                                  | 1.1 | 34        |
| 63 | Interplay between interference and Coulomb interaction in the ferromagnetic Anderson model with applied magnetic field. Physical Review B, 2009, 79, .                                                               | 1.1 | 14        |
| 64 | Density-matrix theory of quantum cascade lasers: Localization effects. , 2009, , .                                                                                                                                   |     | 0         |
| 65 | Zeroâ€phonon line broadening and satellite peaks in nanowire quantum dots: The role of piezoelectric<br>coupling. Physica Status Solidi (B): Basic Research, 2009, 246, 337-341.                                     | 0.7 | 6         |
| 66 | Temperature degradation of the gain transition in terahertz quantum cascade lasers - the role of<br>acoustic phonon scattering. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6,<br>579-582. | 0.8 | 4         |
| 67 | Simulation of gain in quantum cascade lasers. Proceedings of SPIE, 2009, , .                                                                                                                                         | 0.8 | 8         |
| 68 | Density-matrix theory of the optical dynamics and transport in quantum cascade structures: The role of coherence. Physical Review B, 2009, 79, .                                                                     | 1.1 | 52        |
| 69 | Coherence and spatial resolution of transport in quantum cascade lasers. Physica Status Solidi C:<br>Current Topics in Solid State Physics, 2008, 5, 215-220.                                                        | 0.8 | 26        |
| 70 | Temperature dependence of the gain profile for terahertz quantum cascade lasers. Applied Physics<br>Letters, 2008, 92, .                                                                                             | 1.5 | 76        |
| 71 | Theory of Nonlinear Transport for Ensembles ofÂQuantum Dots. Nanoscience and Technology, 2008, ,<br>211-220.                                                                                                         | 1.5 | 0         |
| 72 | InAs nanowire metal-oxide-semiconductor capacitors. Applied Physics Letters, 2008, 92, .                                                                                                                             | 1.5 | 84        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Analysing the capacitance–voltage measurements of vertical wrapped-gated nanowires.<br>Nanotechnology, 2008, 19, 435201.                                                                                          | 1.3 | 27        |
| 74 | The alpha factor of a quantum cascade laser. , 2008, , .                                                                                                                                                          |     | 0         |
| 75 | Coherence in optics and transport in terahertz quantum cascade lasers. , 2008, , .                                                                                                                                |     | Ο         |
| 76 | Electron transport through nanosystems driven by Coulomb scattering. Physical Review B, 2007, 76, .                                                                                                               | 1.1 | 4         |
| 77 | Zero-Phonon Linewidth and Phonon Satellites in the Optical Absorption of Nanowire-Based Quantum<br>Dots. Physical Review Letters, 2007, 99, 087401.                                                               | 2.9 | 30        |
| 78 | Fingerprints of spatial charge transfer in quantum cascade lasers. Journal of Applied Physics, 2007, 102, .                                                                                                       | 1.1 | 32        |
| 79 | Coherent transport through an interacting double quantum dot: Beyond sequential tunneling.<br>Physical Review B, 2007, 75, .                                                                                      | 1.1 | 59        |
| 80 | Nonlinear carrier waves and gain oscillations in infrared and terahertz quantum cascade lasers. ,<br>2007, , .                                                                                                    |     | 0         |
| 81 | Few Electron Double Quantum Dots in InAs/InP Nanowire Heterostructures. Nano Letters, 2007, 7, 243-246.                                                                                                           | 4.5 | 104       |
| 82 | Microscopic theory for intersubband spontaneous emission. Physica Status Solidi C: Current Topics in<br>Solid State Physics, 2007, 4, 356-359.                                                                    | 0.8 | 2         |
| 83 | Coexistence of gain and absorption. Nature Physics, 2007, 3, 298-299.                                                                                                                                             | 6.5 | 23        |
| 84 | Characterization of intersubband devices combining a nonequilibrium many body theory with<br>transmission spectroscopy experiments. Journal of Materials Science: Materials in Electronics, 2007,<br>18, 689-694. | 1.1 | 29        |
| 85 | Counting statistics and decoherence in coupled quantum dots. Physical Review B, 2006, 73, .                                                                                                                       | 1.1 | 81        |
| 86 | Microscopic Intersubband Optics: Nonequilibrium Many-Body Physics Meets Device Engineering. , 2006, , .                                                                                                           |     | 0         |
| 87 | Probing the electronic and optical properties of quantum cascade lasers under operating conditions.<br>, 2006, 6386, 81.                                                                                          |     | 0         |
| 88 | Quantum mechanical wavepacket transport in quantum cascade laser structures. Physical Review B,<br>2006, 73, .                                                                                                    | 1.1 | 92        |
| 89 | Theory of the ultrafast nonlinear response of terahertz quantum cascade laser structures. Applied<br>Physics Letters, 2006, 89, 091112.                                                                           | 1.5 | 28        |
| 90 | Phonon-assisted tunneling through quantum dot stacks. Physical Review B, 2006, 73, .                                                                                                                              | 1.1 | 8         |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Theory of the ultrafast nonlinear optical properties of quantum cascade lasers: From gain spectra to electronic wave packets. , 2006, , .                                             |     | 0         |
| 92  | Super-Poissonian Current Fluctuations in Tunneling Through Coupled Quantum Dots. , 2006, , 23-27.                                                                                     |     | 1         |
| 93  | Self-consistent theory of the gain linewidth for quantum-cascade lasers. Applied Physics Letters, 2005, 86, 041108.                                                                   | 1.5 | 77        |
| 94  | Effect of Coulomb corrections and mean field on gain and absorption in quantum cascade lasers.<br>Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3027-3030. | 0.8 | 6         |
| 95  | Decoherence and current fluctuations in tunneling through coupled quantum dots. AIP Conference<br>Proceedings, 2005, , .                                                              | 0.3 | 0         |
| 96  | Tunneling through nanosystems: Combining broadening with many-particle states. Physical Review B, 2005, 72, .                                                                         | 1.1 | 115       |
| 97  | Positive correlations in tunnelling through coupled quantum dots. Semiconductor Science and Technology, 2004, 19, S37-S39.                                                            | 1.0 | 10        |
| 98  | Coulomb scattering with remote continuum states in quantum dot devices. Journal of Applied Physics, 2004, 95, 7966-7970.                                                              | 1.1 | 16        |
| 99  | Controlling many-body effects in the midinfrared gain and terahertz absorption of quantum cascade<br>laser structures. Physical Review B, 2004, 69, .                                 | 1.1 | 52        |
| 100 | Non-local Auger effect in quantum dot devices. Semiconductor Science and Technology, 2004, 19, S43-S44.                                                                               | 1.0 | 6         |
| 101 | Coulomb effects in tunneling through a quantum dot stack. Physical Review B, 2004, 69, .                                                                                              | 1.1 | 23        |
| 102 | Dependence of lasing properties of GaAs/AlxGa1ÂxAs quantum cascade lasers on injector doping density: theory and experiment. Semiconductor Science and Technology, 2004, 19, S45-S47. | 1.0 | 14        |
| 103 | Inhomogeneous charging and screening effects in semiconductor quantum dot arrays. New Journal of Physics, 2004, 6, 81-81.                                                             | 1.2 | 7         |
| 104 | Many-body theory for multiple intersubband absorption in heterostructures. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2003, 17, 618-619.                               | 1.3 | 2         |
| 105 | Shot noise in tunneling through a quantum dot array. Physica Status Solidi C: Current Topics in Solid<br>State Physics, 2003, 0, 1293-1296.                                           | 0.8 | 15        |
| 106 | Nonlinear charging effect of quantum dots in apâ^iâ^'ndiode. Physical Review B, 2003, 68, .                                                                                           | 1.1 | 20        |
| 107 | Self-consistent Coulomb effects and charge distribution of quantum dot arrays. Physical Review B, 2003, 68, .                                                                         | 1.1 | 10        |
| 108 | Theoretical analysis of spectral gain in a terahertz quantum-cascade laser: Prospects for gain at 1 THz.<br>Applied Physics Letters, 2003, 83, 2506-2508.                             | 1.5 | 24        |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Hybrid Model for Chaotic Front Dynamics: From Semiconductors to Water Tanks. Physical Review<br>Letters, 2003, 91, 066601.                                                | 2.9 | 31        |
| 110 | Shot noise of coupled semiconductor quantum dots. Physical Review B, 2003, 68, .                                                                                          | 1.1 | 60        |
| 111 | Feasibility of a semiconductor superlattice oscillator based on quenched domains for the generation of submillimeter waves. Applied Physics Letters, 2002, 81, 1515-1517. | 1.5 | 25        |
| 112 | High-frequency impedance of driven superlattices. Journal of Applied Physics, 2002, 92, 3137-3140.                                                                        | 1.1 | 10        |
| 113 | Control of the dipole domain propagation in a GaAs/AlAs superlattice with a high-frequency field.<br>Physical Review B, 2002, 65, .                                       | 1.1 | 20        |
| 114 | Chaotic front dynamics in semiconductor superlattices. Physical Review B, 2002, 65, .                                                                                     | 1.1 | 46        |
| 115 | Dynamical bistability in quantum-dot structures: Role of Auger processes. Physical Review B, 2002, 66, .                                                                  | 1.1 | 12        |
| 116 | <title>Synchronization of dipole domains in GHz-driven superlattices</title> ., 2002, , .                                                                                 |     | 1         |
| 117 | Gain in quantum cascade lasers and superlattices: A quantum transport theory. Physical Review B, 2002, 66, .                                                              | 1.1 | 112       |
| 118 | Nonequilibrium Green's function theory for transport and gain properties of quantum cascade<br>structures. Physical Review B, 2002, 66, .                                 | 1.1 | 205       |
| 119 | Many-Particle Charging Effects and Recombination Current through a Quantum Dot Array. Physica<br>Status Solidi (B): Basic Research, 2002, 234, 215-220.                   | 0.7 | 2         |
| 120 | Gain and loss in quantum cascade lasers. Physica B: Condensed Matter, 2002, 314, 327-331.                                                                                 | 1.3 | 5         |
| 121 | Nonlinear transport through an ensemble of quantum dots. Physica B: Condensed Matter, 2002, 314, 459-463.                                                                 | 1.3 | 10        |
| 122 | Tripole current oscillations in superlattices. Physica B: Condensed Matter, 2002, 314, 404-408.                                                                           | 1.3 | 14        |
| 123 | Ultrafast coherent electron transport in GaAs/AlGaAs quantum cascade structures. Physica B:<br>Condensed Matter, 2002, 314, 314-322.                                      | 1.3 | 6         |
| 124 | Optics with ballistic electrons: anti-reflection coatings for GaAs/AlGaAs superlattices. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2002, 12, 285-288.     | 1.3 | 4         |
| 125 | Sequential tunneling through an array of electrostatically coupled quantum dots. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2002, 12, 837-840.             | 1.3 | 6         |
| 126 | Quantum transport calculations for quantum cascade laser structures. Physica E: Low-Dimensional<br>Systems and Nanostructures, 2002, 13, 858-861.                         | 1.3 | 9         |

| #   | Article                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Semiconductor superlattices: a model system for nonlinear transport. Physics Reports, 2002, 357, 1-111.                                                                         | 10.3 | 411       |
| 128 | Transport in Nanostructures: A Comparison between Nonequilibrium Green Functions and Density Matrices. , 2001, , 199-210.                                                       |      | 4         |
| 129 | Antireflection coating for miniband transport and Fabry–Pérot resonances in GaAs/AlGaAs<br>superlattices. Applied Physics Letters, 2001, 79, 1486-1488.                         | 1.5  | 50        |
| 130 | Capacitance-Voltage Spectroscopy of Self-Organized InAs/GaAs Quantum Dots Embedded in a pn Diode.<br>Physica Status Solidi (B): Basic Research, 2001, 224, 79-83.               | 0.7  | 3         |
| 131 | Magnetotransport through semiconductor superlattices. Physical Review B, 2001, 63, .                                                                                            | 1.1  | 5         |
| 132 | Dynamic scenarios of multistable switching in semiconductor superlattices. Physical Review E, 2001, 63, 066207.                                                                 | 0.8  | 46        |
| 133 | Optics with Ballistic Electrons: Anti-Reflection Coatings for GaAs-AlGaAs Superlattices. Springer Proceedings in Physics, 2001, , 743-744.                                      | 0.1  | 1         |
| 134 | Field domains in semiconductor superlattices: Dynamic scenarios of multistable switching. Springer<br>Proceedings in Physics, 2001, , 801-802.                                  | 0.1  | 1         |
| 135 | Interminiband spectroscopy of biased superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 274-278.                                                    | 1.3  | 1         |
| 136 | Lateral current density fronts in globally coupled bistable semiconductors with S- or Z-shaped current voltage characteristics. European Physical Journal B, 2000, 13, 157-168. | 0.6  | 50        |
| 137 | Thermal breakdown, bistability, and complex high-frequency current oscillations due to carrier heating in superlattices. Applied Physics Letters, 2000, 76, 2059-2061.          | 1.5  | 11        |
| 138 | Wave fronts may move upstream in semiconductor superlattices. Physical Review E, 2000, 61, 4866-4876.                                                                           | 0.8  | 34        |
| 139 | Capacitance–voltage characteristics of InAs/GaAs quantum dots embedded in a pn structure. Applied<br>Physics Letters, 2000, 77, 1671-1673.                                      | 1.5  | 41        |
| 140 | Inelastic Quantum Transport in Superlattices: Success and Failure of the Boltzmann Equation.<br>Physical Review Letters, 1999, 83, 836-839.                                     | 2.9  | 66        |
| 141 | Theory of transmission through disordered superlattices. Physical Review B, 1999, 60, 16039-16049.                                                                              | 1.1  | 15        |
| 142 | Continuum Wannier-Stark Ladders Strongly Coupled by Zener Resonances in Semiconductor<br>Superlattices. Physical Review Letters, 1999, 82, 3120-3123.                           | 2.9  | 30        |
| 143 | Hot electrons in superlattices: quantum transport versus Boltzmann equation. Physica B: Condensed<br>Matter, 1999, 272, 157-159.                                                | 1.3  | 2         |
| 144 | Scattering and Bloch oscillation in semiconductor superlattices. Physica B: Condensed Matter, 1999, 272, 175-179.                                                               | 1.3  | 1         |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Simultaneous investigation of vertical transport and intersubband absorption in a superlattice:<br>Continuum WannierA¢Â€Â"Stark ladders and next-nearest-neighbor tunneling. Physica B: Condensed Matter,<br>1999, 272, 194-197. | 1.3 | 0         |
| 146 | Complex behavior due to electron heating in superlattices exhibiting high-frequency current oscillations. Physica B: Condensed Matter, 1999, 272, 202-204.                                                                       | 1.3 | 3         |
| 147 | Transmission through superlattices with interface roughness. Superlattices and Microstructures, 1999, 25, 43-46.                                                                                                                 | 1.4 | 2         |
| 148 | Geometry Effects at Conductance Quantization in Quantum Wires. Physica Status Solidi (B): Basic Research, 1999, 216, R5-R6.                                                                                                      | 0.7 | 0         |
| 149 | Impact of interface roughness on perpendicular transport and domain formation in superlattices.<br>Superlattices and Microstructures, 1998, 23, 297-300.                                                                         | 1.4 | 7         |
| 150 | Strong impact of impurity bands on domain formation in superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 493-497.                                                                                   | 1.3 | 0         |
| 151 | Nonlinear and oscillatory electronic transport in superlattices as a probe of structural imperfections. Physica B: Condensed Matter, 1998, 249-251, 961-965.                                                                     | 1.3 | 4         |
| 152 | Resonant tunnelling in superlattices with a basis. Semiconductor Science and Technology, 1998, 13, 910-914.                                                                                                                      | 1.0 | 14        |
| 153 | Transition Between Coherent and Incoherent Electron Transport inGaAs/GaAlAsSuperlattices.<br>Physical Review Letters, 1998, 81, 3495-3498.                                                                                       | 2.9 | 68        |
| 154 | Quantum Transport: The Link between Standard Approaches in Superlattices. Physical Review Letters, 1998, 80, 369-372.                                                                                                            | 2.9 | 108       |
| 155 | Vertical transport and domain formation in multiple quantum wells. , 1998, , 321-355.                                                                                                                                            |     | 9         |
| 156 | Current-voltage characteristic and stability in resonant-tunneling n-dopedsemiconductor superlattices. Physical Review B, 1997, 55, 2466-2475.                                                                                   | 1.1 | 69        |
| 157 | Sequential tunneling in doped superlattices: Fingerprints of impurity bands and photon-assisted tunneling. Physical Review B, 1997, 56, 13268-13278.                                                                             | 1.1 | 30        |
| 158 | Electrically tunable GHz oscillations in doped GaAs-AlAs superlattices. Physical Review B, 1997, 55, 2476-2488.                                                                                                                  | 1.1 | 134       |
| 159 | Microscopic modelling of perpendicular electronic transport in doped multiple quantum wells.<br>Physica Scripta, 1997, T69, 321-324.                                                                                             | 1.2 | 13        |
| 160 | Transport in a Weakly-Coupled Superlattice: A Quantitative Approach for Photon-Assisted Tunneling.<br>Physica Status Solidi (B): Basic Research, 1997, 204, 73-76.                                                               | 0.7 | 4         |
| 161 | Possible THz Gain in Superlattices at a Stable Operation Point. Physica Status Solidi (B): Basic Research, 1997, 204, 95-97.                                                                                                     | 0.7 | 9         |
| 162 | Temperature persistent bistability and threshold switching in a single barrier heterostructure<br>hotâ€electron diode. Journal of Applied Physics, 1996, 80, 3376-3380.                                                          | 1.1 | 11        |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Spiking in a semiconductor device: Experiments and comparison with a model. Physical Review E, 1996, 54, 1253-1260.                                                         | 0.8 | 19        |
| 164 | The influence of imperfections and weak disorder on domain formation in superlattices.<br>Semiconductor Science and Technology, 1996, 11, 475-482.                          | 1.0 | 14        |
| 165 | Oscillatory Instabilities and Field Domain Formation in Imperfect Superlattices. , 1996, , 177-181.                                                                         |     | 2         |
| 166 | Criteria for stability in bistable electrical devices with S―or Zâ€shaped current voltage characteristic.<br>Journal of Applied Physics, 1995, 78, 7352-7357.               | 1.1 | 68        |
| 167 | Probing growth-related disorder by high-field transport in semiconductor superlattices. Physical<br>Review B, 1995, 52, 13788-13791.                                        | 1.1 | 29        |
| 168 | Nonresonant carrier transport through high-field domains in semiconductor superlattices. Physical<br>Review B, 1995, 51, 9943-9951.                                         | 1.1 | 48        |
| 169 | Transient Spatio-Temporal Chaos in a Reaction-Diffusion Model. Europhysics Letters, 1995, 31, 257-262.                                                                      | 0.7 | 52        |
| 170 | Oscillatory Transport Instabilities and Complex Spatio-Temporal Dynamics in Semiconductors.<br>Springer Proceedings in Physics, 1995, , 21-45.                              | 0.1 | 5         |
| 171 | General Conditions for Stability in Bistable Electrical Devices with S- or Z-Shaped Current-Voltage<br>Characteristics. NATO ASI Series Series B: Physics, 1995, , 489-492. | 0.2 | 0         |
| 172 | Spiking at vertical electrical transport in a heterostructure device. Semiconductor Science and Technology, 1994, 9, 592-594.                                               | 1.0 | 20        |
| 173 | Dynamical behavior in a quantum-dot structure. Physical Review B, 1994, 49, 16785-16788.                                                                                    | 1.1 | 4         |
| 174 | Simple model for multistability and domain formation in semiconductor superlattices. Physical Review B, 1994, 50, 1705-1712.                                                | 1.1 | 130       |
| 175 | Finite-size scaling of the specific heat of4 He near Tλ. Physica B: Condensed Matter, 1994, 194-196, 611-612.                                                               | 1.3 | 10        |
| 176 | Bifurcation scenarios of spatio-temporal spiking in semiconductor devices. Physics Letters, Section A:<br>General, Atomic and Solid State Physics, 1994, 195, 144-150.      | 0.9 | 12        |
| 177 | Spiking in an activator-inhibitor model for elements with S-shaped negative differential conductivity.<br>European Physical Journal B, 1994, 93, 431-436.                   | 0.6 | 38        |
| 178 | Multistability of the currentâ€voltage characteristics in doped GaAsâ€AlAs superlattices. Applied Physics<br>Letters, 1994, 65, 1808-1810.                                  | 1.5 | 115       |
| 179 | Spatio-temporal dynamics of vertical charge transport in a semiconductor heterostructure.<br>Semiconductor Science and Technology, 1992, 7, 1456-1463.                      | 1.0 | 14        |
| 180 | Oscillatory instability in the heterostructure hotâ€electron diode. Applied Physics Letters, 1991, 59,<br>1702-1704.                                                        | 1.5 | 25        |

| #   | Article                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Simulation of Transport and Gain in Quantum Cascade Lasers. Advances in Solid State Physics, 0, , 369-382. | 0.8 | 6         |