Sara Iborra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8022998/publications.pdf

Version: 2024-02-01

53660 32761 20,355 97 45 100 citations h-index g-index papers 118 118 118 16702 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of Transportation Fuels from Biomass:Â Chemistry, Catalysts, and Engineering. Chemical Reviews, 2006, 106, 4044-4098.	23.0	6,799
2	Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 2007, 107, 2411-2502.	23.0	5,297
3	Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 2014, 16, 516.	4.6	1,157
4	Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 2011, 111, 1072-1133.	23.0	720
5	Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 2011, 13, 520.	4.6	528
6	Biomass into Chemicals: Aerobic Oxidation of 5â€Hydroxymethylâ€2â€furfural into 2,5â€Furandicarboxylic Acid with Gold Nanoparticle Catalysts. ChemSusChem, 2009, 2, 1138-1144.	3.6	458
7	Base Catalysis for Fine Chemicals Production: Claisen-Schmidt Condensation on Zeolites and Hydrotalcites for the Production of Chalcones and Flavanones of Pharmaceutical Interest. Journal of Catalysis, 1995, 151, 60-66.	3.1	344
8	Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 2010, 269, 140-149.	3.1	337
9	Heterogeneous Catalysis for Tandem Reactions. ACS Catalysis, 2014, 4, 870-891.	5 . 5	304
10	Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Advances, 2012, 2, 16-58.	1.7	297
11	Biomass into chemicals: One pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. Journal of Catalysis, 2009, 265, 109-116.	3.1	234
12	Activated hydrotalcites as catalysts for the synthesis of chalcones of Apharmaceutical interest. Journal of Catalysis, 2004, 221, 474-482.	3.1	221
13	Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. Journal of Catalysis, 2005, 234, 340-347.	3.1	200
14	Modified faujasite zeolites as catalysts in organic reactions: Esterification of carboxylic acids in the presence of HY zeolites. Journal of Catalysis, 1989, 120, 78-87.	3.1	149
15	Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nature Communications, 2014, 5, 3145.	5. 8	135
16	Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs. Journal of Molecular Catalysis A, 2002, 182-183, 327-342.	4.8	131
17	Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. Journal of Catalysis, 2000, 192, 441-447.	3.1	106
18	MgO nanoparticle-based multifunctional catalysts in the cascade reaction allows the green synthesis of anti-inflammatory agents. Journal of Catalysis, 2007, 247, 223-230.	3.1	101

#	Article	IF	Citations
19	Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 2015, 5, 5812-5821.	5.5	99
20	Acid–Base Bifunctional Catalysts for the Preparation of Fine Chemicals: Synthesis of Jasminaldehyde. Journal of Catalysis, 2001, 197, 385-393.	3.1	88
21	Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO ₂ to Methane. Journal of the American Chemical Society, 2019, 141, 19304-19311.	6.6	86
22	Optimization of Alkaline Earth Metal Oxide and Hydroxide Catalysts for Base-Catalyzed Reactions. Advances in Catalysis, 2006, 49, 239-302.	0.1	82
23	One-pot synthesis of phenols from aromatic aldehydes by Baeyer–Villiger oxidation with H2O2 using water-tolerant Lewis acids in molecular sieves. Journal of Catalysis, 2004, 221, 67-76.	3.1	81
24	Gold catalysts and solid catalysts for biomass transformations: Valorization of glycerol and glycerol–water mixtures through formation of cyclic acetals. Journal of Catalysis, 2010, 271, 351-357.	3.1	81
25	Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream. Energy and Environmental Science, 2015, 8, 317-331.	15.6	81
26	One-step synthesis of citronitril on hydrotalcite derived base catalysts. Applied Catalysis A: General, 1994, 114, 215-225.	2.2	80
27	Mono―and Multisite Solid Catalysts in Cascade Reactions for Chemical Process Intensification. ChemSusChem, 2009, 2, 500-506.	3.6	77
28	Chemicals from biomass: Etherification of 5-hydroxymethyl-2-furfural (HMF) into $5,5\hat{a}\in^2(\text{oxy-bis}(\text{methylene}))$ bis-2-furfural (OBMF) with solid catalysts. Journal of Catalysis, 2010, 275, 236-242.	3.1	74
29	Biomass into chemicals: One-pot two- and three-step synthesis of quinoxalines from biomass-derived glycols and 1,2-dinitrobenzene derivatives using supported gold nanoparticles as catalysts. Journal of Catalysis, 2012, 292, 118-129.	3.1	70
30	6-Endo-Dig vs. 5-Exo-Dig ring closure in o-hydroxyaryl phenylethynyl ketones. A new approach to the synthesis of flavones and aurones. Journal of Organic Chemistry, 1986, 51, 4432-4436.	1.7	69
31	Synthesis of Pseudoionones by Acid and Base Solid Catalysts. Catalysis Letters, 2002, 79, 157-163.	1.4	65
32	Biomassâ€Derived Chemicals: Synthesis of Biodegradable Surfactant Ether Molecules from Hydroxymethylfurfural. ChemSusChem, 2014, 7, 210-220.	3.6	62
33	Gem-diamines as highly active organocatalysts for carbon–carbon bond formation. Journal of Catalysis, 2007, 246, 136-146.	3.1	59
34	From Biomass to Chemicals: Synthesis of Precursors of Biodegradable Surfactants from 5â€Hydroxymethylfurfural. ChemSusChem, 2013, 6, 123-131.	3.6	58
35	A New Environmentally Benign Catalytic Process for the Asymmetric Synthesis of Lactones: Synthesis of the Flavouringl´-Decalactone Molecule. Advanced Synthesis and Catalysis, 2004, 346, 257-262.	2.1	56
36	Heterogeneous Palladium Catalysts for a New Oneâ€Pot Chemical Route in the Synthesis of Fragrances Based on the Heck Reaction. Advanced Synthesis and Catalysis, 2007, 349, 1949-1954.	2.1	56

#	Article	IF	CITATIONS
37	Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry and Engineering, 2019, 7, 6243-6250.	3.2	56
38	Oneâ€Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds. ChemSusChem, 2017, 10, 119-128.	3.6	55
39	New one-pot multistep process with multifunctional catalysts: decreasing the E factor in the synthesis of fine chemicals. Green Chemistry, 2010, 12, 99-107.	4.6	54
40	Nanoparticles of Pd on Hybrid Polyoxometalateâ^'lonic Liquid Material: Synthesis, Characterization, and Catalytic Activity for Heck Reaction. Journal of Physical Chemistry C, 2010, 114, 8828-8836.	1.5	54
41	Magnetic graphene oxide as a platform for the immobilization of cellulases and xylanases: Ultrastructural characterization and assessment of lignocellulosic biomass hydrolysis. Renewable Energy, 2021, 164, 491-501.	4.3	53
42	Heteropolycompounds as catalysts for biomass product transformations. Catalysis Reviews - Science and Engineering, 2016, 58, 497-586.	5.7	51
43	Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 2009, 15, 8834-8841.	1.7	48
44	Synthesis of methylpseudoionones by activated hydrotalcites as solid base catalysts. Green Chemistry, 2002, 4, 474-480.	4.6	47
45	Simple Quaternary Ammonium Cations-Templated Syntheses of Extra-Large Pore Germanosilicate Zeolites. Chemistry of Materials, 2016, 28, 6455-6458.	3.2	46
46	Bifunctional Acid–Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 2010, 16, 1221-1231.	1.7	44
47	A new, alternative, halogen-free synthesis for the fragrance compound Melonal using zeolites and mesoporous materials as oxidation catalysts. Journal of Catalysis, 2005, 234, 96-100.	3.1	43
48	Mutual Valorization of 5-Hydroxymethylfurfural and Glycerol into Valuable Diol Monomers with Solid Acid Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 4239-4245.	3.2	42
49	Nanosized and delayered zeolitic materials for the liquid-phase Beckmann rearrangement of cyclododecanone oxime. Journal of Catalysis, 2007, 250, 161-170.	3.1	39
50	MCM-41 Heterogenized Chiral Amines as Base Catalysts for Enantioselective Michael Reaction. Catalysis Letters, 2002, 82, 237-242.	1.4	36
51	Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst. Catalysis Science and Technology, 2017, 7, 3008-3016.	2.1	36
52	Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green Chemistry, 2019, 21, 839-849.	4.6	36
53	Surfactants from Biomass: A Twoâ€Step Cascade Reaction for the Synthesis of Sorbitol Fatty Acid Esters Using Solid Acid Catalysts. ChemSusChem, 2008, 1, 85-90.	3.6	35
54	Synthesis of nonsteroidal drugs with anti-inflammatory and analgesic activities with zeolites and mesoporous molecular sieve catalysts. Journal of Catalysis, 2005, 233, 308-316.	3.1	33

#	Article	IF	CITATIONS
55	Nanocrystalline CeO ₂ as a Highly Active and Selective Catalyst for the Dehydration of Aldoximes to Nitriles and One-Pot Synthesis of Amides and Esters. ACS Catalysis, 2016, 6, 4564-4575.	5.5	32
56	Chemoenzymatic Synthesis of 5â∈Hydroxymethylfurfural (HMF)â€Derived Plasticizers by Coupling HMF Reduction with Enzymatic Esterification. ChemSusChem, 2020, 13, 1864-1875.	3.6	32
57	Gold Catalysis Opens Up a New Route for the Synthesis of Benzimidazoylquinoxaline Derivatives from Biomassâ€Derived Products (Glycerol). ChemCatChem, 2013, 5, 3866-3874.	1.8	28
58	Two-Dimensional ITQ-2 Zeolite for Biomass Transformation: Synthesis of Alkyl 5-Benzyl-2-furoates as Intermediates for Fine Chemicals. ACS Sustainable Chemistry and Engineering, 2016, 4, 6152-6159.	3.2	27
59	Chemicals from biomass derived products: synthesis of polyoxyethyleneglycol esters from fatty acid methyl esters with solid basic catalysts. Green Chemistry, 2006, 8, 524.	4.6	26
60	Oneâ€Pot Synthesis of Biomassâ€Derived Surfactants by Reacting Hydroxymethylfurfural, Glycerol, and Fatty Alcohols on Solid Acid Catalysts. ChemSusChem, 2018, 11, 2870-2880.	3.6	24
61	Oligomerization of Alkenes. , 2006, , 125-140.		23
62	Transforming Methyl Levulinate into Biosurfactants and Biolubricants by Chemoselective Reductive Etherification with Fatty Alcohols. ChemSusChem, 2020, 13, 707-714.	3.6	23
63	New photochemical approaches to the synthesis of chromones. Tetrahedron, 1987, 43, 143-148.	1.0	22
64	Photosensitized Dehydrogenation of Flavanones to Flavones Using 2,4,6-Triphenylpyrylium Tetrafluoroborate (TPT). Heterocycles, 1989, 29, 115.	0.4	22
65	Mesoporous molecular sieve Sn-MCM-41 as Baeyer-Villiger oxidation catalyst for sterically demanding aromatic and a,ß-unsaturated aldehydes. Arkivoc, 2005, 2005, 124-132.	0.3	21
66	Synthesis of a hybrid PdO/Pd-carbide/carbon catalyst material with high selectivity for hydrogenation reactions. Journal of Catalysis, 2020, 389, 706-713.	3.1	20
67	Production of chiral alcohols from racemic mixtures by integrated heterogeneous chemoenzymatic catalysis in fixed bed continuous operation. Green Chemistry, 2020, 22, 2767-2777.	4.6	20
68	Title is missing!. Catalysis Letters, 2001, 74, 161-167.	1.4	19
69	Postsynthesis‶reated Ironâ€Based Metal–Organic Frameworks as Selective Catalysts for the Sustainable Synthesis of Nitriles. ChemSusChem, 2015, 8, 3270-3282.	3.6	19
70	Chemicals from Biomass: Synthesis of Biologically Active Furanochalcones by Claisen–Schmidt Condensation of Biomass-Derived 5-hydroxymethylfurfural (HMF) with Acetophenones. Topics in Catalysis, 2016, 59, 1257-1265.	1.3	19
71	Bifunctional acid–base ionic liquid for the one-pot synthesis of fine chemicals: Thioethers, 2H-chromenes and 2H-quinoline derivatives. Applied Catalysis A: General, 2014, 481, 27-38.	2.2	18
72	Process Intensification with Bifunctional Heterogeneous Catalysts: Selective One-Pot Synthesis of $2\hat{a}\in^2$ -Aminochalcones. ACS Catalysis, 2015, 5, 157-166.	5.5	18

#	Article	IF	Citations
73	Transformation of Cellulose into Nonionic Surfactants Using a Oneâ€Pot Catalytic Process. ChemSusChem, 2016, 9, 3492-3502.	3.6	18
74	Acid zeolites as catalysts in organic reactions: condensation of acetophenone with benzene derivatives. Applied Catalysis A: General, 1995, 130, 5-12.	2.2	17
75	Biomass to fuels: A water-free process for biodiesel production with phosphazene catalysts. Applied Catalysis A: General, 2008, 346, 52-57.	2.2	15
76	Solid Catalysts for Multistep Reactions: Oneâ∈Pot Synthesis of 2,3â∈Dihydroâ∈1,5â∈benzothiazepines with Solid Acid and Base Catalysts. ChemSusChem, 2014, 7, 1177-1185.	3.6	15
77	Application of the Photo-Fries Rearrangement of Aryl Dihydrocinnamates to the Synthesis of Flavonoids. Heterocycles, 1985, 23, 1983.	0.4	15
78	Direct synthesis of the organic and Ge free Al containing BOG zeolite (ITQ-47) and its application for transformation of biomass derived molecules. Chemical Science, 2020, 11, 12103-12108.	3.7	14
79	A Career in Catalysis: Avelino Corma. ACS Catalysis, 2022, 12, 7054-7123.	5.5	14
80	Hydride transfer reactions of benzylic alcohols catalyzed by acid faujasites. Recueil Des Travaux Chimiques Des Pays-Bas, 2010, 110, 275-278.	0.0	13
81	Preparation of Glycerol Carbonate Esters by using Hybrid Nafion–Silica Catalyst. ChemSusChem, 2013, 6, 1224-1234.	3.6	13
82	Molecular Oxygen Lignin Depolymerization: An Insight into the Stability of Phenolic Monomers. ChemSusChem, 2020, 13, 4743-4758.	3.6	13
83	Covalent Immobilization of Naringinase over Twoâ€Dimensional 2D Zeolites and its Applications in a Continuous Process to Produce Citrus Flavonoids and for Debittering of Juices. ChemCatChem, 2020, 12, 4502-4511.	1.8	13
84	In situ multinuclear solid-state NMR spectroscopy study of Beckmann rearrangement of cyclododecanone oxime in ionic liquids: The nature of catalytic sites. Journal of Catalysis, 2010, 275, 78-83.	3.1	12
85	A recyclable bifunctional acid–base organocatalyst with ionic liquid character. The role of site separation and spatial configuration on different condensation reactions. Physical Chemistry Chemical Physics, 2011, 13, 17255.	1.3	12
86	Bimetallic CuFe nanoparticles as active and stable catalysts for chemoselective hydrogenation of biomass-derived platform molecules. Catalysis Science and Technology, 2021, 11, 3353-3363.	2.1	12
87	Polyoxyethylene esters of fatty acids: an alternative synthetic route for high selectivity of monoesters. Catalysis Today, 2004, 97, 271-276.	2.2	11
88	Methanolysis of sunflower oil using gem-diamines as active organocatalysts for biodiesel production. Applied Catalysis A: General, 2010, 382, 36-42.	2.2	10
89	Synthetic Routes for Designing Furanic and Non Furanic Biobased Surfactants from 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	3.6	9
90	Stability of the Cellic CTec2 enzymatic preparation immobilized onto magnetic graphene oxide: Assessment of hydrolysis of pretreated sugarcane bagasse. Industrial Crops and Products, 2022, 183, 114972.	2.5	9

#	Article	IF	CITATIONS
91	Dual behaviour of sepiolites as single electron acceptors or Lewis acids: Reactivity of two αâ€acetoxystyrenes adsorbed on a iron(III)â€exchanged sepiolite. Recueil Des Travaux Chimiques Des Pays-Bas, 1992, 111, 126-128.	0.0	6
92	MONO and Tridirectional 12-Membered Ring Zeolites as Acid Catalysts for Carbonyl Group Reactions. Studies in Surface Science and Catalysis, 1991, 59, 557-564.	1.5	5
93	Selective Conversion of HMF into 3â€Hydroxymethylcyclopentylamine through a Oneâ€Pot Cascade Process in Aqueous Phase over Bimetallic NiCo Nanoparticles as Catalyst. ChemSusChem, 2022, 15, .	3.6	5
94	Base-Type Catalysis. , 2006, , 171-205.		4
95	Nitration of Aromatic Compounds. , 2006, , 105-123.		3
96	Use of Mesoporous Molecular Sieves in the Production of Fine Chemicals: Preparation of Dihydroquinolinones of Pharmaceutical Interest From 2′â€Aminochalcones. ChemCatChem, 2016, 8, 1335-1345.	1.8	2
97	Intermolecular reactions of radical cations in the gas phase. Mass spectral evidence for an ion-molecule process leading to the dimerimtion of aurones. Organic Mass Spectrometry, 1989, 24, 429-430.	1.3	0