
Sean R Eddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/802296/publications.pdf Version: 2024-02-01

SEAN P FOOV

#	Article	IF	CITATIONS
1	Initial sequencing and analysis of the human genome. Nature, 2001, 409, 860-921.	27.8	21,074
2	tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Research, 1997, 25, 955-964.	14.5	9,417
3	The Pfam protein families database. Nucleic Acids Research, 2007, 36, D281-D288.	14.5	6,372
4	Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, 420, 520-562.	27.8	6,319
5	Pfam: the protein families database. Nucleic Acids Research, 2014, 42, D222-D230.	14.5	5,425
6	The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 2016, 44, D279-D285.	14.5	5,391
7	Accelerated Profile HMM Searches. PLoS Computational Biology, 2011, 7, e1002195.	3.2	5,076
8	HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 2011, 39, W29-W37.	14.5	4,492
9	tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Research, 1997, 25, 0955-964.	14.5	3,970
10	The Pfam protein families database in 2019. Nucleic Acids Research, 2019, 47, D427-D432.	14.5	3,937
11	The Pfam protein families database. Nucleic Acids Research, 2012, 40, D290-D301.	14.5	3,306
12	The Pfam protein families database. Nucleic Acids Research, 2004, 32, 138D-141.	14.5	3,084
13	The Pfam protein families database. Nucleic Acids Research, 2010, 38, D211-D222.	14.5	2,693
14	Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics, 2013, 29, 2933-2935.	4.1	2,281
15	The Pfam Protein Families Database. Nucleic Acids Research, 2002, 30, 276-280.	14.5	2,067
16	Pfam: clans, web tools and services. Nucleic Acids Research, 2006, 34, D247-D251.	14.5	2,030
17	A uniform system for microRNA annotation. Rna, 2003, 9, 277-279.	3.5	1,620
18	HMMER web server: 2018 update. Nucleic Acids Research, 2018, 46, W200-W204.	14.5	1,432

#	Article	IF	CITATIONS
19	Rfam: an RNA family database. Nucleic Acids Research, 2003, 31, 439-441.	14.5	1,296
20	Infernal 1.0: inference of RNA alignments. Bioinformatics, 2009, 25, 1335-1337.	4.1	1,293
21	Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research, 2004, 33, D121-D124.	14.5	1,255
22	Non–coding RNA genes and the modern RNA world. Nature Reviews Genetics, 2001, 2, 919-929.	16.3	1,235
23	Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research, 2013, 41, e121-e121.	14.5	1,214
24	The Pfam Protein Families Database. Nucleic Acids Research, 2000, 28, 263-266.	14.5	1,173
25	Hidden Markov models. Current Opinion in Structural Biology, 1996, 6, 361-365.	5.7	1,118
26	Pfam: A comprehensive database of protein domain families based on seed alignments. Proteins: Structure, Function and Bioinformatics, 1997, 28, 405-420.	2.6	1,036
27	Rfam 12.0: updates to the RNA families database. Nucleic Acids Research, 2015, 43, D130-D137.	14.5	1,000
28	Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics, 2010, 11, 431.	2.6	966
29	HMMER web server: 2015 update. Nucleic Acids Research, 2015, 43, W30-W38.	14.5	849
30	Rfam: updates to the RNA families database. Nucleic Acids Research, 2009, 37, D136-D140.	14.5	820
31	Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Research, 2018, 46, D335-D342.	14.5	819
32	Automated De Novo Identification of Repeat Sequence Families in Sequenced Genomes. Genome Research, 2002, 12, 1269-1276.	5.5	776
33	Rfam 11.0: 10 years of RNA families. Nucleic Acids Research, 2013, 41, D226-D232.	14.5	745
34	nhmmer: DNA homology search with profile HMMs. Bioinformatics, 2013, 29, 2487-2489.	4.1	735
35	RNA sequence analysis using covariance models. Nucleic Acids Research, 1994, 22, 2079-2088.	14.5	727
36	A new generation of homology search tools based on probabilistic inference. Genome Informatics, 2009, 23, 205-11.	0.4	699

#	Article	IF	CITATIONS
37	A dynamic programming algorithm for RNA structure prediction including pseudoknots 1 1Edited by I. Tinoco. Journal of Molecular Biology, 1999, 285, 2053-2068.	4.2	649
38	Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain. Neuron, 2015, 86, 1369-1384.	8.1	640
39	The Dfam database of repetitive DNA families. Nucleic Acids Research, 2016, 44, D81-D89.	14.5	543
40	Pack-MULE transposable elements mediate gene evolution in plants. Nature, 2004, 431, 569-573.	27.8	495
41	Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Research, 2021, 49, D192-D200.	14.5	475
42	A Computational Screen for Methylation Guide snoRNAs in Yeast. Science, 1999, 283, 1168-1171.	12.6	444
43	An active DNA transposon family in rice. Nature, 2003, 421, 163-167.	27.8	415
44	What is a hidden Markov model?. Nature Biotechnology, 2004, 22, 1315-1316.	17.5	403
45	A NEW GENERATION OF HOMOLOGY SEARCH TOOLS BASED ON PROBABILISTIC INFERENCE. , 2009, , .		403
46	Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics, 2001, 2, 8.	2.6	402
47	Computational identification of noncoding RNAs in E. coli by comparative genomics. Current Biology, 2001, 11, 1369-1373.	3.9	363
48	Rfam: Wikipedia, clans and the "decimal" release. Nucleic Acids Research, 2011, 39, D141-D145.	14.5	355
49	Homologs of Small Nucleolar RNAs in Archaea. Science, 2000, 288, 517-522.	12.6	324
50	A statistical test for conserved RNA structure shows lack of evidence for structure in IncRNAs. Nature Methods, 2017, 14, 45-48.	19.0	300
51	A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation. PLoS Computational Biology, 2008, 4, e1000069.	3.2	287
52	Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics, 2000, 16, 583-605.	4.1	267
53	Query-Dependent Banding (QDB) for Faster RNA Similarity Searches. PLoS Computational Biology, 2007, 3, e56.	3.2	259
54	ATV: display and manipulation of annotated phylogenetic trees. Bioinformatics, 2001, 17, 383-384.	4.1	251

#	Article	IF	CITATIONS
55	Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes and Development, 2005, 19, 903-918.	5.9	243
56	Prepublication data sharing. Nature, 2009, 461, 168-170.	27.8	243
57	Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Research, 2012, 41, D70-D82.	14.5	243
58	The DNA sequence of human chromosome 7. Nature, 2003, 424, 157-164.	27.8	236
59	Where did the BLOSUM62 alignment score matrix come from?. Nature Biotechnology, 2004, 22, 1035-1036.	17.5	227
60	RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinformatics, 2003, 4, 44.	2.6	224
61	Computational Genomics of Noncoding RNA Genes. Cell, 2002, 109, 137-140.	28.9	221
62	Maximum Discrimination Hidden Markov Models of Sequence Consensus. Journal of Computational Biology, 1995, 2, 9-23.	1.6	218
63	Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction. BMC Bioinformatics, 2004, 5, 71.	2.6	207
64	A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. BMC Bioinformatics, 2002, 3, 18.	2.6	206
65	Changes in Gene Expression Associated with Developmental Arrest and Longevity in Caenorhabditis elegans. Genome Research, 2001, 11, 1346-1352.	5.5	202
66	The Oxytricha trifallax Macronuclear Genome: A Complex Eukaryotic Genome with 16,000 Tiny Chromosomes. PLoS Biology, 2013, 11, e1001473.	5.6	198
67	RIO: analyzing proteomes by automated phylogenomics using resampled inference of orthologs. BMC Bioinformatics, 2002, 3, 14.	2.6	160
68	A genetic, genomic, and computational resource for exploring neural circuit function. ELife, 2020, 9, .	6.0	159
69	The C-value paradox, junk DNA and ENCODE. Current Biology, 2012, 22, R898-R899.	3.9	155
70	Noncoding RNA genes identified in AT-rich hyperthermophiles. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7542-7547.	7.1	154
71	Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends in Biochemical Sciences, 1994, 19, 402-404.	7.5	142
72	Cell type–specific genomics of Drosophila neurons. Nucleic Acids Research, 2012, 40, 9691-9704.	14.5	138

#	Article	IF	CITATIONS
73	Noncoding RNA genes. Current Opinion in Genetics and Development, 1999, 9, 695-699.	3.3	135
74	Computational Analysis of Conserved RNA Secondary Structure in Transcriptomes and Genomes. Annual Review of Biophysics, 2014, 43, 433-456.	10.0	118
75	How do RNA folding algorithms work?. Nature Biotechnology, 2004, 22, 1457-1458.	17.5	117
76	What is dynamic programming?. Nature Biotechnology, 2004, 22, 909-910.	17.5	116
77	Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS Biology, 2020, 18, e3000862.	5.6	113
78	Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics, 2006, 7, 400.	2.6	110
79	Epigenomic landscapes of retinal rods and cones. ELife, 2016, 5, e11613.	6.0	106
80	What is Bayesian statistics?. Nature Biotechnology, 2004, 22, 1177-1178.	17.5	105
81	A Model of the Statistical Power of Comparative Genome Sequence Analysis. PLoS Biology, 2005, 3, e10.	5.6	103
82	A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more. Rna, 2012, 18, 193-212.	3.5	103
83	The ENCODE project: Missteps overshadowing a success. Current Biology, 2013, 23, R259-R261.	3.9	86
84	Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature, 2005, 434, 724-731.	27.8	85
85	Autogenous translational operator recognized by bacteriophage T4 DNA polymerase. Journal of Molecular Biology, 1990, 213, 749-761.	4.2	84
86	Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics. Nucleic Acids Research, 2003, 31, 4119-4128.	14.5	79
87	Representation learning of genomic sequence motifs with convolutional neural networks. PLoS Computational Biology, 2019, 15, e1007560.	3.2	72
88	Estimating the power of sequence covariation for detecting conserved RNA structure. Bioinformatics, 2020, 36, 3072-3076.	4.1	69
89	Members of the immunoglobulin superfamily in bacteria. Protein Science, 1996, 5, 1939-1941.	7.6	66
90	Computational identification of functional RNA homologs in metagenomic data. RNA Biology, 2013, 10, 1170-1179.	3.1	56

#	Article	IF	CITATIONS
91	Identification and Characterization of a Class of MALAT1-like Genomic Loci. Cell Reports, 2017, 19, 1723-1738.	6.4	55
92	Probabilistic Phylogenetic Inference with Insertions and Deletions. PLoS Computational Biology, 2008, 4, e1000172.	3.2	51
93	Circular box C/D RNAs in Pyrococcus furiosus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14097-14101.	7.1	46
94	Fast filtering for RNA homology search. Bioinformatics, 2011, 27, 3102-3109.	4.1	39
95	Mixing genome annotation methods in a comparative analysis inflates the apparent number of lineage-specific genes. Current Biology, 2022, 32, 2632-2639.e2.	3.9	36
96	C. elegans noncoding RNA genes. WormBook, 2005, , 1-7.	5.3	34
97	"Antedisciplinary―Science. PLoS Computational Biology, 2005, 1, e6.	3.2	30
98	A computational screen for alternative genetic codes in over 250,000 genomes. ELife, 2021, 10, .	6.0	30
99	A member of the immunoglobulin superfamily in bacteriophage T4. Virus Genes, 1997, 14, 163-165.	1.6	28
100	Parameterizing sequence alignment with an explicit evolutionary model. BMC Bioinformatics, 2015, 16, 406.	2.6	26
101	Gene Evolution: Getting Something from Nothing. Current Biology, 2017, 27, R661-R663.	3.9	23
102	Combinatorial DNA rearrangement facilitates the origin of new genes in ciliates. Genome Biology and Evolution, 2015, 7, evv172.	2.5	22
103	A survey of nematode SmY RNAs. RNA Biology, 2009, 6, 5-8.	3.1	21
104	Remote homology search with hidden Potts models. PLoS Computational Biology, 2020, 16, e1008085.	3.2	21
105	Group I introns are widespread in archaea. Nucleic Acids Research, 2018, 46, 7970-7976.	14.5	20
106	Archaeal Guide RNAs Function in rRNA Modification in the Eukaryotic Nucleus. Current Biology, 2002, 12, 199-203.	3.9	19
107	Local RNA structure alignment with incomplete sequence. Bioinformatics, 2009, 25, 1236-1243.	4.1	17
108	Transcription Factors That Convert Adult Cell Identity Are Differentially Polycomb Repressed. PLoS ONE, 2013, 8, e63407.	2.5	16

#	Article	IF	CITATIONS
109	Free circular introns with an unusual branchpoint in neuronal projections. ELife, 2019, 8, .	6.0	14
110	Exploiting Oxytricha trifallax nanochromosomes to screen for non-coding RNA genes. Nucleic Acids Research, 2011, 39, 7529-7547.	14.5	11
111	Constructing benchmark test sets for biological sequence analysis using independent set algorithms. PLoS Computational Biology, 2022, 18, e1009492.	3.2	10
112	GENETICS: Total Information Awareness for Worm Genetics. Science, 2006, 311, 1381-1382.	12.6	6
113	A Genetic, Genomic, and Computational Resource for Exploring Neural Circuit Function. SSRN Electronic Journal, 0, , .	0.4	6
114	Homology searches for structural RNAs: from proof of principle to practical use. Rna, 2015, 21, 605-607.	3.5	3
115	Is the Pope the Pope?. Nature, 1996, 382, 490-490.	27.8	2
116	RNA structure alignment on a massively parallel computer. Lecture Notes in Computer Science, 1995, , 502-507.	1.3	0
117	Inside the black boxes Computer methods for macromolecular sequence analysis (Methods in) Tj ETQq1 1 0.7843	814 rgBT / 7.5	Overlock 10
118	Broadening Pfam Protein Sequence Annotations. Nature Precedings, 2009, , .	0.1	0
119	Many, but not all, lineage-specific genes can be explained by homology detection failure. , 2020, 18, e3000862.		0
120	Many, but not all, lineage-specific genes can be explained by homology detection failure. , 2020, 18, e3000862.		0
121	Many, but not all, lineage-specific genes can be explained by homology detection failure. , 2020, 18, e3000862.		0
122	Many, but not all, lineage-specific genes can be explained by homology detection failure. , 2020, 18, e3000862.		0
123	Many, but not all, lineage-specific genes can be explained by homology detection failure. , 2020, 18, e3000862.		0
124	Many, but not all, lineage-specific genes can be explained by homology detection failure. , 2020, 18, e3000862.		0
125	Remote homology search with hidden Potts models. , 2020, 16, e1008085.		0
126	Remote homology search with hidden Potts models. , 2020, 16, e1008085.		0

0

#	Article	IF	CITATIONS
127	Remote homology search with hidden Potts models. , 2020, 16, e1008085.		Ο

Remote homology search with hidden Potts models. , 2020, 16, e1008085.