Artur José Santos Mascarenhas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8022526/publications.pdf

Version: 2024-02-01

Artur José Santos

#	Article	IF	CITATIONS
1	Co-ZSM-5 catalysts for N2O decomposition. Applied Catalysis B: Environmental, 1998, 18, 223-231.	20.2	145
2	A DFT study of halogen atoms adsorbed on graphene layers. Nanotechnology, 2010, 21, 485701.	2.6	85
3	Adsorption of monovalent metal atoms on graphene: a theoretical approach. Nanotechnology, 2010, 21, 115701.	2.6	77
4	Efficiency of zeolite MCM-22 with different SiO2/Al2O3 molar ratios in gas phase glycerol dehydration to acrolein. Microporous and Mesoporous Materials, 2013, 181, 74-82.	4.4	59
5	MWW-type catalysts for gas phase glycerol dehydration to acrolein. Journal of Catalysis, 2016, 334, 34-41.	6.2	50
6	Synthesis of CdS nano-spheres by a simple and fast sonochemical method at room temperature. Materials Letters, 2014, 136, 111-113.	2.6	38
7	Synthesis of nanosized β-BiTaO4 by the polymeric precursor method. Materials Letters, 2010, 64, 1088-1090.	2.6	31
8	One-Step Synthesis of Alkyltrimethylammonium-Intercalated Magadiite. Clays and Clay Minerals, 2000, 48, 224-229.	1.3	30
9	Oxidative dehydration of glycerol over alternative H,Fe-MCM-22 catalysts: Sustainable production of acrylic acid. Microporous and Mesoporous Materials, 2019, 278, 366-377.	4.4	28
10	NO and CO Adsorption on Over-Exchanged Cu-MCM-22:Â A FTIR Study. Langmuir, 2002, 18, 6875-6880.	3.5	26
11	Photocatalytic hydrogen production with visible light over Mo and Cr-doped BiNb(Ta)O4. International Journal of Hydrogen Energy, 2014, 39, 1220-1227.	7.1	24
12	Sonochemical synthesis of Cd1â^'xZnxS solid solutions for application in photocatalytic reforming of glycerol to produce hydrogen. Journal of Alloys and Compounds, 2015, 649, 332-336.	5.5	24
13	Reduced coke formation during the gas phase oxidative dehydration of glycerol over ferrierite zeolites synthesized in fluoride medium. Microporous and Mesoporous Materials, 2016, 223, 105-113.	4.4	23
14	Studies on the synthesis of ZSM-5 by interzeolite transformation from zeolite Y without using organic structure directing agents. Microporous and Mesoporous Materials, 2020, 306, 110413.	4.4	20
15	Synthesis and characterization of magnetic mesoporous particles. Journal of Colloid and Interface Science, 2010, 342, 269-277.	9.4	19
16	Gas phase glycerol oxidative dehydration over bifunctional V/H-zeolite catalysts with different zeolite topologies. Catalysis Today, 2017, 289, 38-46.	4.4	19
17	Preparation and evaluation of composite with a natural red clay and TiO2 for dye discoloration assisted by visible light. Applied Clay Science, 2017, 135, 603-610.	5.2	17
18	Effects of additional gases on the catalytic decomposition of N2O over Cu-ZSM-5. Reaction Kinetics and Catalysis Letters, 1998, 64, 215-220.	0.6	15

ARTUR JOSé SANTOS

#	Article	IF	CITATIONS
19	Alkali-activation of spent fluid cracking catalysts for CO 2 capture. Microporous and Mesoporous Materials, 2016, 232, 1-12.	4.4	14
20	Optical and electronic properties of nanosized BiTaO ₄ and BiNbO ₄ photocatalysts: Experiment and theory. Physica Status Solidi (B): Basic Research, 2014, 251, 1034-1039.	1.5	11
21	Study of electronic and optical properties of BiTaO ₄ for photocatalysis. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1593-1596.	0.8	10
22	N2O-assisted methanol selective oxidation to formaldehyde on cobalt oxide catalysts derived from layered double hydroxides. Catalysis Communications, 2018, 113, 32-35.	3.3	10
23	Bonding character of lithium atoms adsorbed on a graphene layer. Solid State Communications, 2011, 151, 529-531.	1.9	9
24	Hydrothermal synthesis of bismuth niobates and their application in azo-dyes photo-discoloration. Materials Research Bulletin, 2018, 103, 166-172.	5.2	7
25	Synthesis, characterization and evaluation of MFI zeolites as matrixes for rhynchophorol prolonged release. Microporous and Mesoporous Materials, 2017, 242, 99-108.	4.4	6
26	Development of composite membrane <scp>PBAT</scp> : Zeolite <scp>Y</scp> for application as rhynchophorol release system. Journal of Applied Polymer Science, 2018, 135, 45757.	2.6	6
27	Spectroscopic and catalytic studies on Cu-MCM-22: Effect of copper loading. Studies in Surface Science and Catalysis, 2002, 142, 343-350.	1.5	5
28	Selective catalytic oxidation of CO in H2. Reaction Kinetics and Catalysis Letters, 2005, 87, 3-9.	0.6	4
29	Single Step Synthesis of Magnetic Materials Derived from Biomass Residues. Waste and Biomass Valorization, 2021, 12, 1039-1050.	3.4	4
30	Validation of analytical method for rhynchophorol quantification and stability in inorganic matrix for the controlled release of this pheromone. Chemistry Central Journal, 2018, 12, 54.	2.6	3
31	Are diazides really dangerous compounds under ordinary conditions?. Tetrahedron Letters, 2020, 61, 152574.	1.4	3
32	Release of aggregation pheromone rhynchophorol from clay minerals montmorillonite and kaolinite. Journal of Thermal Analysis and Calorimetry, 0, , 1.	3.6	1
33	Selective catalytic oxidation of CO in H2 over copper-exchanged zeolites. Studies in Surface Science and Catalysis, 2007, 167, 195-200.	1.5	О