Yu Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8022444/publications.pdf

Version: 2024-02-01

94269 118652 4,812 126 37 62 citations h-index g-index papers 128 128 128 4085 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heterogeneous conversion of CO ₂ into cyclic carbonates at ambient pressure catalyzed by ionothermal-derived meso-macroporous hierarchical poly(ionic liquid)s. Chemical Science, 2015, 6, 6916-6924.	3.7	229
2	Imidazolinium based porous hypercrosslinked ionic polymers for efficient CO ₂ capture and fixation with epoxides. Green Chemistry, 2017, 19, 2675-2686.	4.6	228
3	Tethering Dual Hydroxyls into Mesoporous Poly(ionic liquid)s for Chemical Fixation of CO ₂ at Ambient Conditions: A Combined Experimental and Theoretical Study. ACS Catalysis, 2017, 7, 6770-6780.	5.5	193
4	Recent advances in polyoxometalate-based heterogeneous catalytic materials for liquid-phase organic transformations. RSC Advances, 2014, 4, 42092-42113.	1.7	189
5	Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373, 315-320.	6.0	179
6	Hydroxyl-Exchanged Nanoporous Ionic Copolymer toward Low-Temperature Cycloaddition of Atmospheric Carbon Dioxide into Carbonates. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12812-12821.	4.0	126
7	Hydrophilic mesoporous poly(ionic liquid)-supported Au–Pd alloy nanoparticles towards aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions. Green Chemistry, 2017, 19, 3820-3830.	4.6	109
8	Imidazoliumâ€Functionalized Ionic Hypercrosslinked Porous Polymers for Efficient Synthesis of Cyclic Carbonates from Simulated Flue Gas. ChemSusChem, 2020, 13, 341-350.	3.6	103
9	Efficient CO2 enrichment and fixation by engineering micropores of multifunctional hypercrosslinked ionic polymers. Chemical Engineering Journal, 2020, 390, 124652.	6.6	103
10	Mesoporous Polyoxometalate-Based Ionic Hybrid As a Triphasic Catalyst for Oxidation of Benzyl Alcohol with H ₂ O ₂ on Water. ACS Applied Materials & amp; Interfaces, 2014, 6, 4438-4446.	4.0	100
11	Pd nanoparticles encapsulated into mesoporous ionic copolymer: Efficient and recyclable catalyst for the oxidation of benzyl alcohol with O2 balloon in water. Applied Catalysis B: Environmental, 2016, 189, 242-251.	10.8	97
12	Amino Acid Anion Paired Mesoporous Poly(ionic liquids) as Metal-/Halogen-Free Heterogeneous Catalysts for Carbon Dioxide Fixation. ACS Sustainable Chemistry and Engineering, 2019, 7, 9387-9398.	3.2	95
13	A hierarchical meso-macroporous poly(ionic liquid) monolith derived from a single soft template. Chemical Communications, 2015, 51, 4969-4972.	2.2	87
14	Polyoxometalate-based phase transfer catalysis for liquid–solid organic reactions: a review. Catalysis Science and Technology, 2015, 5, 4324-4335.	2.1	83
15	Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature. Journal of Hazardous Materials, 2012, 203-204, 341-347.	6.5	80
16	Ordered Porous Poly(ionic liquid) Crystallines: Spacing Confined Ionic Surface Enhancing Selective CO ₂ Capture and Fixation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6031-6041.	4.0	76
17	C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol. Scientific Reports, 2014, 4, 3651.	1.6	75

#	Article	IF	CITATIONS
19	Immediate hydroxylation of arenes to phenols via V-containing all-silica ZSM-22 zeolite triggered non-radical mechanism. Nature Communications, 2018, 9, 2931.	5.8	66
20	Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers. Scientific Reports, 2015, 5, 11236.	1.6	64
21	Hypercrosslinked organic polymer based carbonaceous catalytic materials: Sulfonic acid functionality and nano-confinement effect. Applied Catalysis B: Environmental, 2015, 176-177, 718-730.	10.8	64
22	Hydrophobic Mesoporous Poly(ionic liquid)s towards Highly Efficient and Contaminationâ€Resistant Solidâ€Base Catalysts. ChemCatChem, 2015, 7, 993-1003.	1.8	62
23	One-Pot Template-Free Synthesis of Cu–MOR Zeolite toward Efficient Catalyst Support for Aerobic Oxidation of 5-Hydroxymethylfurfural under Ambient Pressure. ACS Applied Materials & Discrete Samp; Interfaces, 2016, 8, 23122-23132.	4.0	62
24	Heteropolyanion-based ionic liquid-functionalized mesoporous copolymer catalyst for Friedel–Crafts benzylation of arenes with benzyl alcohol. Chemical Engineering Journal, 2014, 254, 54-62.	6.6	61
25	Nanobelt α-CuV ₂ O ₆ with hydrophilic mesoporous poly(ionic liquid): a binary catalyst for synthesis of 2,5-diformylfuran from fructose. Catalysis Science and Technology, 2017, 7, 1006-1016.	2.1	60
26	One-pot synthesis of foam-like magnesia and its performance in CO2 adsorption. Microporous and Mesoporous Materials, 2013, 169, 112-119.	2.2	58
27	Phase-transfer hydroxylation of benzene with H2O2 catalyzed by a nitrile-functionalized pyridinium phosphovanadomolybdate. Catalysis Science and Technology, 2013, 3, 1394.	2.1	53
28	Fully-occupied Keggin type polyoxometalate as solid base for catalyzing CO ₂ cycloaddition and Knoevenagel condensation. Catalysis Science and Technology, 2016, 6, 460-467.	2.1	51
29	Hybrid of Polyoxometalate-Based Ionic Salt and N-Doped Carbon toward Reductant-Free Aerobic Hydroxylation of Benzene to Phenol. ACS Sustainable Chemistry and Engineering, 2016, 4, 4986-4996.	3.2	49
30	Pore structure controllable synthesis of mesoporous poly(ionic liquid)s by copolymerization of alkylvinylimidazolium salts and divinylbenzene. RSC Advances, 2014, 4, 23389-23395.	1.7	48
31	Direct aerobic oxidative homocoupling of benzene to biphenyl over functional porous organic polymer supported atomically dispersed palladium catalyst. Applied Catalysis B: Environmental, 2017, 209, 679-688.	10.8	47
32	Unseeded organotemplate-free hydrothermal synthesis of heteroatomic MFI zeolite poly-nanocrystallites. Journal of Materials Chemistry A, 2013, 1, 2453.	5.2	43
33	Pyrazinium polyoxometalate tetrakaidecahedron-like crystals esterify oleic acid with equimolar methanol at room temperature. Journal of Catalysis, 2016, 339, 123-134.	3.1	43
34	4,4′-Bipyridine-modified molybdovanadophosphoric acid: A reusable heterogeneous catalyst for direct hydroxylation of benzene with O2. Chemical Engineering Journal, 2014, 239, 19-25.	6.6	42
35	Direct synthesis of V-containing all-silica beta-zeolite for efficient one-pot, one-step conversion of carbohydrates into 2,5-diformylfuran. Catalysis Science and Technology, 2017, 7, 6050-6058.	2.1	42
36	One-pot synthesis of the amine-modified meso-structured monolith CO2 adsorbent. Journal of Materials Chemistry, 2010, 20, 2840.	6.7	39

#	Article	IF	CITATIONS
37	Sustained Release of Heparin on Enlarged-Pore and Functionalized MCM-41. ACS Applied Materials & Lamp; Interfaces, 2012, 4, 4113-4122.	4.0	38
38	Direct Synthesis of 2,5-Diformylfuran from Carbohydrates Using High-Silica MOR Zeolite-Supported Isolated Vanadium Species. ACS Sustainable Chemistry and Engineering, 2017, 5, 10029-10037.	3.2	38
39	In situ functionalized sulfonic copolymer toward recyclable heterogeneous catalyst for efficient Beckmann rearrangement of cyclohexanone oxime. Applied Catalysis A: General, 2016, 510, 125-133.	2.2	37
40	lonic mesoporous polyamides enable highly dispersed ultrafine Ru nanoparticles: a synergistic stabilization effect and remarkable efficiency in levulinic acid conversion into \hat{I}^3 -valerolactone. Journal of Materials Chemistry A, 2019, 7, 19140-19151.	5. 2	37
41	Conferring Poly(ionic liquid)s with High Surface Areas for Enhanced Catalytic Activity. ACS Sustainable Chemistry and Engineering, 2021, 9, 2115-2128.	3.2	37
42	Pure-silica ZSM-22 zeolite rapidly synthesized by novel ionic liquid-directed dry-gel conversion. RSC Advances, 2014, 4, 49647-49654.	1.7	36
43	One-pot hydrothermal synthesis of ultrafine Pd clusters within Beta zeolite for selective oxidation of alcohols. Green Chemistry, 2020, 22, 4199-4209.	4.6	34
44	Heterogeneous Beckmann Rearrangements Catalyzed by a Sulfonated Imidazolium Salt of Phosphotungstate. Catalysis Letters, 2013, 143, 193-199.	1.4	33
45	Boosting exciton dissociation by regulating dielectric constant in covalent organic framework for photocatalysis. Chem Catalysis, 2022, 2, 1734-1747.	2.9	33
46	Applying heterogeneous catalysis to health care: In situ elimination of tobacco-specific nitrosamines (TSNAs) in smoke by molecular sieves. Catalysis Today, 2013, 212, 52-61.	2.2	32
47	Size and stability modulation of Pd nanoparticles on porous hypercrosslinked ionic polymer for heterogeneous aerobic oxidative coupling of diaryl ether. Applied Catalysis B: Environmental, 2021, 281, 119425.	10.8	31
48	Facile synthesis of nanosized nickel phosphides with controllable phase and morphology. New Journal of Chemistry, 2013, 37, 4083.	1.4	30
49	Direct Carbonization of Cyanopyridinium Crystalline Dicationic Salts into Nitrogen-Enriched Ultra-Microporous Carbons toward Excellent CO ₂ Adsorption. ACS Applied Materials & amp; Interfaces, 2015, 7, 18508-18518.	4.0	30
50	Amphiphilic Mesoporous Poly(Ionic Liquid) Immobilized Heteropolyanions Towards the Efficient Heterogeneous Epoxidation of Alkenes with Stoichiometric Hydrogen Peroxide. ChemCatChem, 2017, 9, 4426-4436.	1.8	30
51	Synergistic combination of graphitic C3N4 and polyoxometalate-based phase-transfer catalyst for highly efficient reductant-free aerobic hydroxylation of benzene. Chemical Engineering Journal, 2018, 334, 873-881.	6.6	29
52	Direct synthesis of 2,5-diformylfuran from carbohydrates via carbonizing polyoxometalate based mesoporous poly(ionic liquid). Catalysis Today, 2019, 319, 57-65.	2.2	29
53	In Situ Encapsulation of Pt Nanoparticles within Pure Silica TON Zeolites for Space-Confined Selective Hydrogenation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11522-11532.	4.0	29
54	Straightforward synthesis of beta zeolite encapsulated Pt nanoparticles for the transformation of 5-hydroxymethyl furfural into 2,5-furandicarboxylic acid. Chinese Journal of Catalysis, 2021, 42, 994-1003.	6.9	29

#	Article	IF	CITATIONS
55	Mordenite zeolite with ultrahigh SiO2/Al2O3 ratio directly synthesized from ionic liquid-assisted dry-gel-conversion. Microporous and Mesoporous Materials, 2016, 224, 17-25.	2.2	27
56	Functional Mesoporous Material Derived from 3D Netâ€Linked SBAâ€15. Chemistry - A European Journal, 2009, 15, 6748-6757.	1.7	26
57	Dual-sulfonated dipyridinium phosphotungstate catalyst for liquid-phase Beckmann rearrangement of cyclohexanone oxime. RSC Advances, 2014, 4, 15635.	1.7	26
58	Mesoporous poly(ionic liquid) supported palladium(II) catalyst for oxidative coupling of benzene under atmospheric oxygen. Applied Surface Science, 2018, 427, 575-583.	3.1	26
59	Capturing Nitrosamines by Zeolite A:  Molecular Recognition in Subnanometer Space. Journal of Physical Chemistry C, 2008, 112, 6740-6748.	1.5	25
60	Multiple functionalization of SBA-15 mesoporous silica in one-pot: fabricating an aluminum-containing plugged composite for sustained heparin release. Journal of Materials Chemistry B, 2013, 1, 3897.	2.9	25
61	Morphology-controlled synthesis of large mordenite crystals. New Journal of Chemistry, 2014, 38, 3295-3301.	1.4	25
62	Directly synthesized V-containing BEA zeolite: Acid-oxidation bifunctional catalyst enhancing C-alkylation selectivity in liquid-phase methylation of phenol. Chemical Engineering Journal, 2017, 328, 1031-1042.	6.6	25
63	"Spring-loaded―mechanism for chemical fixation of carbon dioxide with epoxides. Chem Catalysis, 2022, 2, 519-530.	2.9	25
64	Catalytic degradation of tobacco-specific nitrosamines by ferric zeolite. Applied Catalysis B: Environmental, 2013, 129, 301-308.	10.8	24
65	Mesostructured Dihydroxyâ€Functionalized Guanidiniumâ€Based Polyoxometalate with Enhanced Heterogeneous Catalytic Activity in Epoxidation. ChemPlusChem, 2013, 78, 561-569.	1.3	23
66	Oneâ€Pot Synthesis of Zeolitic Strong Solid Bases: A Family of Alkalineâ€Earth Metalâ€Containing Silicaliteâ€1. Chemistry - A European Journal, 2015, 21, 15412-15420.	1.7	23
67	Aerobic oxidation of benzene to phenol over polyoxometalate-paired PdII-coordinated hybrid: Reductant-free heterogeneous catalysis. Catalysis Communications, 2015, 59, 1-4.	1.6	23
68	Synergistic Catalysis of Fe ₂ O ₃ Nanoparticles on Mesoporous Poly(ionic) Tj ETQq0 0 0 r Chemistry Research, 2017, 56, 12289-12296.	gBT /Over 1.8	lock 10 Tf 50 23
69	Synergistic catalysis of one-pot cascade reactions by acidic and basic binary porous polymers. Applied Surface Science, 2019, 478, 221-229.	3.1	23
70	Novel phenol capturer derived from the as-synthesized MCM-41. Journal of Hazardous Materials, 2011, 190, 87-93.	6.5	22
71	Selective adsorption of zeolite towards nitrosamine in organic solution. Microporous and Mesoporous Materials, 2009, 120, 381-388.	2.2	21
72	Controlling the primary particle evolution process towards silica monoliths with tunable hierarchical structure. Journal of Colloid and Interface Science, 2011, 364, 594-604.	5.0	20

#	Article	IF	CITATIONS
73	Ionic self-assembly affords mesoporous ionic networks by crosslinking linear polyviologens with polyoxometalate clusters. Dalton Transactions, 2016, 45, 4504-4508.	1.6	20
74	Engineering polyoxometalate anions on porous ionic network towards highly catalytic active noble metal clusters. Applied Surface Science, 2019, 496, 143650.	3.1	20
75	Nitrogen-Doped Biomass Carbons Meet with Polyoxometalates: Synergistic Catalytic Reductant-Free Aerobic Hydroxylation of Benzene to Phenol. ACS Sustainable Chemistry and Engineering, 2019, 7, 4230-4238.	3.2	20
76	Capturing Nitrosamines by Zeolite MCM-22: Effect of Zeolite Structure and Morphology on Adsorption. Journal of Physical Chemistry C, 2010, 114, 9588-9595.	1.5	19
77	Modifying MCM-41 as an efficient nitrosamine trap in aqueous solution. Solid State Sciences, 2009, 11, 402-410.	1.5	18
78	Adsorption of nitrogen oxides by the moisture-saturated zeolites in gas stream. Journal of Hazardous Materials, 2009, 162, 866-873.	6.5	18
79	Synthesis of Largeâ€Pore Ureaâ€Bridged Periodic Mesoporous Organosilicas. Chemistry - an Asian Journal, 2009, 4, 587-593.	1.7	18
80	One-pot synthesis of a hierarchical PMO monolith with superior performance in enzyme immobilization. Journal of Materials Chemistry B, 2013, 1, 1738.	2.9	18
81	Efficient and recyclable multi-cationic polyoxometalate-based hybrid catalyst for heterogeneous cyclohexane oxidation with H ₂ O ₂ . RSC Advances, 2015, 5, 19306-19314.	1.7	18
82	Effective nitrosamines trap derived from the in situ carbonized mesoporous silica MCM-41. Journal of Hazardous Materials, 2010, 176, 602-608.	6.5	17
83	Creating the adsorptive sites with high performance toward nitrosamines in mesoporous silica MCM-41 by alumina modifier. Microporous and Mesoporous Materials, 2009, 126, 143-151.	2.2	16
84	A new polyoxometalate-based Mo/V coordinated crystalline hybrid and its catalytic activity in aerobic hydroxylation of benzene. RSC Advances, 2014, 4, 45816-45822.	1.7	16
85	Highly Active Palladiumâ€Based Catalyst System for the Aerobic Oxidative Direct Coupling of Benzene to Biphenyl. ChemCatChem, 2016, 8, 448-454.	1.8	16
86	Base-free atmospheric O2-mediated oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid triggered by Mg-bearing MTW zeolite supported Au nanoparticles. Applied Catalysis A: General, 2021, 616, 118106.	2.2	16
87	3D net-linked mesoporous silica monolith: New environmental adsorbent and catalyst. Catalysis Today, 2011, 166, 39-46.	2.2	15
88	Low-cost and effective phenol and basic dyes trapper derived from the porous silica coated with hydrotalcite gel. Journal of Colloid and Interface Science, 2011, 358, 554-561.	5.0	15
89	Novel selective adsorbent derived from hierarchical rockery-like MCM-41 monolith. Journal of Materials Chemistry, 2012, 22, 23633.	6.7	15
90	Ultrahigh mechanically stable hierarchical mordenite zeolite monolith: Direct binder-/template-free hydrothermal synthesis. Chemical Engineering Science, 2015, 138, 473-481.	1.9	15

#	Article	IF	Citations
91	Construction of Acid–Base Synergetic Sites on Mgâ€bearing BEA Zeolites Triggers the Unexpected Lowâ€Temperature Alkylation of Phenol. ChemCatChem, 2017, 9, 1076-1083.	1.8	15
92	Capturing 1,3-butadiene by the highly ordered Al-containing SBA-15. Journal of Hazardous Materials, 2009, 171, 378-385.	6.5	14
93	Novel selective catalyst derived from uniform clustered NaY zeolite microspheres. Journal of Materials Chemistry A, 2013, 1, 6849.	5.2	14
94	Ionic‣iquidâ€Functionalized Polyoxometalates for Heterogeneously Catalyzing the Aerobic Oxidation of Benzene to Phenol: Raising Efficacy through Specific Design. ChemPlusChem, 2014, 79, 1590-1596.	1.3	14
95	Palladium confined in pure-silica TON zeolite for furfuryl alcohol hydrogenation into tetrahydrofurfuryl alcohol. Microporous and Mesoporous Materials, 2021, 322, 111161.	2.2	14
96	Hierarchical functionalized MCM-22 zeolite for trapping tobacco specific nitrosamines (TSNAs) in solution. Journal of Hazardous Materials, 2010, 179, 1031-1036.	6.5	13
97	(Ionic liquid)-derived morphology control of Nb ₂ O ₅ materials and their photocatalytic properties. CrystEngComm, 2014, 16, 9096-9103.	1.3	13
98	Morphology-Controlled Preparation of Heteropolyanion-Derived Mesoporous Solid Base. ACS Sustainable Chemistry and Engineering, 2014, 2, 1918-1927.	3.2	13
99	Phosphotungstic anion-paired quinoline salt for heterogeneous photocatalytic hydroxylation of benzene to phenol with air. Molecular Catalysis, 2019, 473, 110397.	1.0	13
100	Periodic Mesoporous Organosilica Materials: Selfâ€Assembly of Carbamothioic Acidâ€Bridged Organosilane Precursors. Chemistry - A European Journal, 2009, 15, 8310-8318.	1.7	12
101	Mg ²⁺ -derived mesoporous ultra-high silica twelve-membered-ring basic zeolites: straightforward synthesis and catalytic performance. CrystEngComm, 2016, 18, 1164-1173.	1.3	12
102	Direct synthesis of sulfonic group tethered mesoporous poly(ionic liquid) for catalyzing deoximation reactions. Materials Chemistry and Physics, 2017, 189, 118-126.	2.0	12
103	Ambientâ€Temperature Reductive Amination of 5â€Hydroxymethylfurfural Over Al ₂ O ₃ â€Supported Carbonâ€Doped Nickel Catalyst. ChemSusChem, 2022, 15, .	3.6	12
104	Engineering Surface Groups of Commercially Activated Carbon for Benzene Hydroxylation to Phenol with Dioxygen. Industrial & Dioxygen. Ind	1.8	11
105	Straightforward synthesis of MTW-type magnesium silicalite for CO ₂ fixation with epoxides under mild conditions. Catalysis Science and Technology, 2019, 9, 5725-5735.	2.1	11
106	Smallâ€Caliber Vascular Prosthesis Prototype Based on Controlled Release of Heparin from Mesochannels and Its Enhanced Biocompatibility. Small, 2012, 8, 1373-1383.	5.2	10
107	One-pot synthesis of novel ferric cubic mesoporous silica (lm3m symmetry) and its highly efficient adsorption performance. Journal of Materials Chemistry, 2011, 21, 13895.	6.7	9
108	Highly Efficient Hydrogenation of CO2 to Formic Acid over Palladium Supported on Dication Poly(ionic liquid)s. Molecular Catalysis, 2021, 509, 111644.	1.0	9

#	Article	IF	CITATIONS
109	Microwaveâ€induced degradation of nitrosamines trapped in zeolites. Asia-Pacific Journal of Chemical Engineering, 2008, 3, 481-488.	0.8	8
110	In vitro biocompatibility evaluation of ePTFE graft with controlled release of heparin from mesoporous material. Applied Surface Science, 2012, 258, 4041-4047.	3.1	8
111	New facile way to isomorphously substituted $\text{Cr-}\hat{l}^2$ zeolite and its catalytic performance. Microporous and Mesoporous Materials, 2013, 171, 87-93.	2.2	8
112	The metal-incorporated mesoporous carbon with high performance in capture and degradation of volatile nitrosamines. Catalysis Today, 2009, 148, 88-96.	2.2	7
113	Direct hydroxylation of benzene to phenol with hydrogen peroxide catalyzed by a quinine heteropolyacid hybrid. Chinese Journal of Catalysis, 2013, 34, 2118-2124.	6.9	7
114	Novel menthol releaser derived from as-synthesized mesoporous silica. RSC Advances, 2015, 5, 5494-5500.	1.7	7
115	Carbon Catalyzed Hydroxylation of Benzene with Dioxygen to Phenol over Surface Carbonyl Groups. ChemCatChem, 2019, 11, 1076-1085.	1.8	7
116	Fabrication of hierarchical channel wall in Al-MCM-41 mesoporous materials to promote the efficiency of copper modifier. Chemical Engineering Journal, 2011, 169, 390-398.	6.6	5
117	Direct hydrothermal synthesis and characterization of framework-substituted Co(Mn)-Beta zeolites. Journal of Porous Materials, 2013, 20, 891-896.	1.3	5
118	Palladium clusters on dicarboxyl-functional hypercrosslinked porous polymers for oxidative homocoupling of benzene with O2. Molecular Catalysis, 2021, 505, 111487.	1.0	5
119	Small-sized biomass-derived hydrothermal carbon with enriched oxygen groups quickens benzene hydroxylation to phenol with dioxygen. Applied Catalysis A: General, 2021, 626, 118356.	2.2	4
120	lonic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2. Chinese Journal of Chemical Engineering, 2023, 55, 212-221.	1.7	4
121	Significant Promotion of Morphology in Fabricating Efficient Environment Protector. Chinese Journal of Chemistry, 2012, 30, 2073-2078.	2.6	3
122	Insights into the role of titanium sites in cyclohexanone ammoximation over titanium silicalite-1. Molecular Catalysis, 2022, 524, 112298.	1.0	3
123	Synthesis of framework-substituted Co-mordenite by dry gel conversion. Journal of Porous Materials, 2013, 20, 1519-1523.	1.3	1
124	Synergistic Interactions between Ti–OOH and (PO4[WO2(O2)]4)3- of HPW/Zn-Ti Hydrotalcites: Efficient Heterogeneous Catalysts for the Epoxidation of Fatty Acid Methyl Ester. Journal of the Brazilian Chemical Society, 2017, , .	0.6	1
125	Anchoring Boron Atom to the Specific Tetrahedral Sites of Borosilicate MFI by Imidazolium-based Molecules. CrystEngComm, 0, , .	1.3	1
126	Directly Synthesis of ZSM-22 Particles by Adding Polyurethane Foam in Ionic Liquid-directed Dry-gel-conversion. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2015, 30, 615.	0.6	0