
Zdzislaw M Szulc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8022214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlling Immunoregulatory Cell Activity for Effective Photodynamic Therapy of Cancer. Methods in Molecular Biology, 2022, 2451, 569-577.	0.4	1
2	Distinctive sphingolipid patterns in chronic multiple sclerosis lesions. Journal of Lipid Research, 2020, 61, 1464-1479.	2.0	13
3	Inhibition of acid ceramidase regulates MHC class II antigen presentation and suppression of autoimmune arthritis. Cytokine, 2020, 135, 155219.	1.4	4
4	Mechanistic insights into ceramidase inhibitor LCL521-enhanced tumor cell killing by photodynamic and thermal ablation therapies. Photochemical and Photobiological Sciences, 2020, 19, 1145-1151.	1.6	3
5	The NMRâ€based characterization of the FTY720â€5ET complex reveals an alternative mechanism for the attenuation of the inhibitory SETâ€PP2A interaction. FASEB Journal, 2019, 33, 7647-7666.	0.2	30
6	Receptor-interacting Ser/Thr kinase 1 (RIPK1) and myosin IIA–dependent ceramidosomes form membrane pores that mediate blebbing and necroptosis. Journal of Biological Chemistry, 2019, 294, 502-519.	1.6	19
7	C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nature Communications, 2018, 9, 4149.	5.8	76
8	<scp>HPV</scp> /E7 induces chemotherapyâ€mediated tumor suppression by ceramideâ€dependent mitophagy. EMBO Molecular Medicine, 2017, 9, 1030-1051.	3.3	44
9	Novel sphingosine kinase-1 inhibitor, LCL351, reduces immune responses in murine DSS-induced colitis. Prostaglandins and Other Lipid Mediators, 2017, 130, 47-56.	1.0	30
10	Blocking Myristoylation of Src Inhibits Its Kinase Activity and Suppresses Prostate Cancer Progression. Cancer Research, 2017, 77, 6950-6962.	0.4	65
11	Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase. PLoS ONE, 2017, 12, e0177805.	1.1	24
12	Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood, 2016, 128, 1944-1958.	0.6	139
13	Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapyâ€generated vaccine. International Journal of Cancer, 2016, 139, 1372-1378.	2.3	22
14	Ceramide channel: Structural basis for selective membrane targeting. Chemistry and Physics of Lipids, 2016, 194, 110-116.	1.5	15
15	Targeting (cellular) lysosomal acid ceramidase by B13: Design, synthesis and evaluation of novel DMG-B13 ester prodrugs. Bioorganic and Medicinal Chemistry, 2014, 22, 6933-6944.	1.4	32
16	2′-Hydroxy C16-Ceramide Induces Apoptosis-Associated Proteomic Changes in C6 Glioma Cells. Journal of Proteome Research, 2013, 12, 4366-4375.	1.8	14
17	Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2Aâ€RIPK1â€dependent necroptosis. EMBO Molecular Medicine, 2013, 5, 105-121.	3.3	217
18	Cationic ceramides and analogues, LCL30 and LCL85, as adjuvants to photodynamic therapy of tumors. Journal of Photochemistry and Photobiology B: Biology, 2013, 126, 72-77.	1.7	10

Zdzislaw M Szulc

#	Article	IF	CITATIONS
19	LCL124, a Cationic Analog of Ceramide, Selectively Induces Pancreatic Cancer Cell Death by Accumulating in Mitochondria. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 167-178.	1.3	47
20	Bax and Bcl-xL exert their regulation on different sites of the ceramide channel. Biochemical Journal, 2012, 445, 81-91.	1.7	47
21	L- <i>threo</i> -C ₆ -pyridinium-ceramide Bromide, a Novel Cationic Ceramide, Induces NADPH Oxidase Activation, Mitochondrial Dysfunction and Loss in Cell Viability in INS 832/13 �-cells. Cellular Physiology and Biochemistry, 2012, 30, 1051-1058.	1.1	14
22	Ceramide channels: Influence of molecular structure on channel formation in membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1291-1301.	1.4	38
23	Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nature Chemical Biology, 2012, 8, 831-838.	3.9	402
24	ldentification of <scp>C</scp> ₆ eramideâ€interacting proteins in <scp>D</scp> 6 <scp>P</scp> 2 <scp>T S</scp> chwannoma cells. Proteomics, 2012, 12, 2179-2184.	1.3	15
25	Mitochondrially targeted ceramides preferentially promote autophagy, retard cell growth, and induce apoptosis. Journal of Lipid Research, 2011, 52, 278-288.	2.0	43
26	Synthesis, NMR characterization and divergent biological actions of 2′-hydroxy-ceramide/dihydroceramide stereoisomers in MCF7 cells. Bioorganic and Medicinal Chemistry, 2010, 18, 7565-7579.	1.4	16
27	Alkaline Ceramidase 3 (ACER3) Hydrolyzes Unsaturated Long-chain Ceramides, and Its Down-regulation Inhibits Both Cell Proliferation and Apoptosis. Journal of Biological Chemistry, 2010, 285, 7964-7976.	1.6	75
28	Alkaline Ceramidase 2 (ACER2) and Its Product Dihydrosphingosine Mediate the Cytotoxicity of N-(4-Hydroxyphenyl)retinamide in Tumor Cells. Journal of Biological Chemistry, 2010, 285, 29078-29090.	1.6	46
29	Substrate Specificity, Membrane Topology, and Activity Regulation of Human Alkaline Ceramidase 2 (ACER2). Journal of Biological Chemistry, 2010, 285, 8995-9007.	1.6	49
30	Sphingolipid Analysis by High Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS). Advances in Experimental Medicine and Biology, 2010, 688, 46-59.	0.8	115
31	Synthesis and bioevaluation of ï‰-N-amino analogs of B13. Bioorganic and Medicinal Chemistry, 2009, 17, 1840-1848.	1.4	42
32	Comprehensive Quantitative Analysis of Bioactive Sphingolipids by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Methods in Molecular Biology, 2009, 579, 443-467.	0.4	142
33	Novel analogs of d-e-MAPP and B13. Part 2: Signature effects on bioactive sphingolipids. Bioorganic and Medicinal Chemistry, 2008, 16, 1032-1045.	1.4	69
34	Novel analogs of d-e-MAPP and B13. Part 1: Synthesis and evaluation as potential anticancer agents. Bioorganic and Medicinal Chemistry, 2008, 16, 1015-1031.	1.4	45
35	Upregulation of the Human Alkaline Ceramidase 1 and Acid Ceramidase Mediates Calcium-Induced Differentiation of Epidermal Keratinocytes. Journal of Investigative Dermatology, 2008, 128, 389-397.	0.3	76
36	Involvement of Dihydroceramide Desaturase in Cell Cycle Progression in Human Neuroblastoma Cells. Journal of Biological Chemistry, 2007, 282, 16718-16728.	1.6	153

Zdzislaw M Szulc

#	Article	IF	CITATIONS
37	Lysosomotropic acid ceramidase inhibitor induces apoptosis in prostate cancer cells. Cancer Chemotherapy and Pharmacology, 2007, 61, 231-242.	1.1	76
38	Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods, 2006, 39, 82-91.	1.9	471
39	Tailoring structure–function and targeting properties of ceramides by site-specific cationization. Bioorganic and Medicinal Chemistry, 2006, 14, 7083-7104.	1.4	52
40	Golgi Fragmentation Is Associated with Ceramide-induced Cellular Effects. Molecular Biology of the Cell, 2005, 16, 1555-1567.	0.9	83
41	Positively Charged Ceramide Is a Potent Inducer of Mitochondrial Permeabilization. Journal of Biological Chemistry, 2005, 280, 16096-16105.	1.6	104
42	Inhibition of growth and telomerase activity by novel cationic ceramide analogs with high solubility in human head and neck squamous cell carcinoma cells. Otolaryngology - Head and Neck Surgery, 2005, 132, 55-62.	1.1	48
43	Substrate specificity of rat brain ceramidase. Journal of Lipid Research, 2002, 43, 141-148.	2.0	32
44	Substrate specificity of rat brain ceramidase. Journal of Lipid Research, 2002, 43, 141-8.	2.0	29
45	Structural Requirements of Ceramide and Sphingosine Based Inhibitors of Mitochondrial Ceramidaseâ€. Biochemistry, 2001, 40, 9657-9668.	1.2	61
46	A facile regioselective synthesis of sphingosine 1-phosphate and ceramide 1-phosphate. Tetrahedron Letters, 2000, 41, 7821-7824.	0.7	24
47	Chemically Modified Cyclodextrins as Catalytic Enzyme Mimics. , 1996, , 267-272.		0