
## Uta Wille

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8022037/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Surface modification of coal tailings by thermal air oxidation for ammonia capture. Journal of<br>Cleaner Production, 2022, 362, 132525.                                                                                                                                      | 4.6 | 4         |
| 2  | Oxidative Damage of Aliphatic Amino Acid Residues by the Environmental Pollutant<br>NO <sub>3</sub> <sup>A·</sup> : Impact of Water on the Reactivity. Environmental Science &<br>Technology, 2022, 56, 7687-7695.                                                            | 4.6 | 4         |
| 3  | Synthesis of spirocyclic heterocycles from α,β-unsaturated <i>N</i> -acyliminium ions. Organic and<br>Biomolecular Chemistry, 2021, 19, 259-272.                                                                                                                              | 1.5 | 9         |
| 4  | Ring Expansion of Thiolactams via Imide Intermediates: An Amino Acid Insertion Strategy. Chemistry - A<br>European Journal, 2021, 27, 1620-1625.                                                                                                                              | 1.7 | 23        |
| 5  | Oxidative Damage of Sâ€Containing Amino Acids by the Environmental Radical NO 3 . : A Kinetic, Product<br>and Computational Study. ChemistrySelect, 2021, 6, 4482-4490.                                                                                                       | 0.7 | 1         |
| 6  | Substituted 1,2,3-triazoles: a new class of nitrification inhibitors. Scientific Reports, 2021, 11, 14980.                                                                                                                                                                    | 1.6 | 13        |
| 7  | Reaction of Distonic Aryl and Alkyl Radical Cations with Amines: The Role of Charge and Spin Revealed<br>by Mass Spectrometry, Kinetic Studies, and DFT Calculations. ChemPlusChem, 2020, 85, 195-206.                                                                        | 1.3 | 1         |
| 8  | Reactions of a distonic peroxyl radical anion influenced by SOMO–HOMO conversion: an example of anion-directed channel switching. Physical Chemistry Chemical Physics, 2020, 22, 2130-2141.                                                                                   | 1.3 | 9         |
| 9  | Oxidative damage of proline residues by nitrate radicals (NO <sub>3</sub> Ë™): a kinetic and product study. Organic and Biomolecular Chemistry, 2020, 18, 6949-6957.                                                                                                          | 1.5 | 10        |
| 10 | Oxidative Repair of Pyrimidine Cyclobutane Dimers by Nitrate Radicals (NO3•): A Kinetic and<br>Computational Study. Chemistry, 2020, 2, 453-469.                                                                                                                              | 0.9 | 0         |
| 11 | 1,2-Addition <i>versus</i> homoconjugate addition reactions of indoles and electron-rich arenes to<br>α-cyclopropyl <i>N</i> -acyliminium ions: synthetic and computational studies. Organic and<br>Biomolecular Chemistry, 2019, 17, 7025-7035.                              | 1.5 | 12        |
| 12 | Oxidative Damage in Aliphatic Amino Acids and Di- and Tripeptides by the Environmental Free Radical<br>Oxidant NO <sub>3</sub> <sup>•</sup> : The Role of the Amide Bond Revealed by Kinetic and<br>Computational Studies. Journal of Organic Chemistry, 2019, 84, 3405-3418. | 1.7 | 14        |
| 13 | Photophysical insights and guidelines for blue "turnâ€on―fluorescent probes for the direct detection of nitric oxide (NO <sup>•</sup> ) in biological systems. Journal of Physical Organic Chemistry, 2019, 32, e3896.                                                        | 0.9 | 5         |
| 14 | Amide Neighbouringâ€Group Effects in Peptides: Phenylalanine as Relay Amino Acid in Longâ€Distance<br>Electron Transfer. ChemBioChem, 2018, 19, 922-926.                                                                                                                      | 1.3 | 29        |
| 15 | Reversible Photoisomerization of the Isolated Green Fluorescent Protein Chromophore. Journal of Physical Chemistry Letters, 2018, 9, 2647-2651.                                                                                                                               | 2.1 | 23        |
| 16 | Photoisomerization of Methyl Vinyl Ketone and Methacrolein in the Troposphere: A Theoretical<br>Investigation of Ground-State Reaction Pathways. ACS Earth and Space Chemistry, 2018, 2, 753-763.                                                                             | 1.2 | 8         |
| 17 | Environmental Polymer Degradation: Using the Distonic Radical Ion Approach to Study the Gas-Phase<br>Reactions of Model Polyester Radicals. Journal of Physical Chemistry A, 2017, 121, 5290-5300.                                                                            | 1.1 | 3         |
| 18 | Synthesis of Peptides by Silverâ€Promoted Coupling of Carboxylates and Thioamides: Mechanistic Insight from Computational Studies. Chemistry - A European Journal, 2016, 22, 3163-3169.                                                                                       | 1.7 | 12        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Reaction of Amino Acids, Di―and Tripeptides with the Environmental Oxidant<br>NO <sub>3</sub> <sup>.</sup> : A Laser Flash Photolysis and Computational Study. Chemistry - an Asian<br>Journal, 2016, 11, 3188-3195.            | 1.7  | 13        |
| 20 | Oxidative Damage of Biomolecules by the Environmental Pollutants NO <sub>2</sub> <sup>•</sup> and NO <sub>3</sub> <sup>•</sup> . Accounts of Chemical Research, 2016, 49, 2136-2145.                                            | 7.6  | 32        |
| 21 | Synthesis of Bridged Heterocycles via Sequential 1,4- and 1,2-Addition Reactions to α,β-Unsaturated<br><i>N</i> -Acyliminium Ions: Mechanistic and Computational Studies. Journal of Organic Chemistry,<br>2016, 81, 1434-1449. | 1.7  | 20        |
| 22 | Oxidation of cholesterol and O-protected derivatives by the environmental pollutant<br>NO <sub>2</sub> Ë™. Chemical Communications, 2016, 52, 4060-4063.                                                                        | 2.2  | 9         |
| 23 | Fragmentation–Rearrangement of Peptide Backbones Mediated by the Air Pollutant<br>NO <sub>2</sub> <sup>.</sup> . Chemistry - A European Journal, 2015, 21, 14924-14930.                                                         | 1.7  | 8         |
| 24 | What Are the Potential Sites of Protein Arylation by <i>N</i> -Acetyl- <i>p</i> -benzoquinone Imine (NAPQI)?. Chemical Research in Toxicology, 2015, 28, 2224-2233.                                                             | 1.7  | 31        |
| 25 | A Theoretical Study of the Photoisomerization of Glycolaldehyde and Subsequent OH Radical-Initiated<br>Oxidation of 1,2-Ethenediol. Journal of Physical Chemistry A, 2015, 119, 9812-9820.                                      | 1.1  | 20        |
| 26 | The role of peroxyl radicals in polyester degradation – a mass spectrometric product and kinetic<br>study using the distonic radical ion approach. Physical Chemistry Chemical Physics, 2015, 17, 9212-9221.                    | 1.3  | 8         |
| 27 | Physical Organic Chemistry. Australian Journal of Chemistry, 2014, 67, 685.                                                                                                                                                     | 0.5  | 0         |
| 28 | Unimolecular reaction chemistry of a charge-tagged beta-hydroxyperoxyl radical. Physical Chemistry<br>Chemical Physics, 2014, 16, 24954-24964.                                                                                  | 1.3  | 9         |
| 29 | Atmospheric Chemistry of Enols: A Theoretical Study of the Vinyl Alcohol + OH + O <sub>2</sub><br>Reaction Mechanism. Environmental Science & Technology, 2014, 48, 6694-6701.                                                  | 4.6  | 55        |
| 30 | Oxidative damage of aromatic dipeptides by the environmental oxidants NO2Ë™ and O3. Organic and<br>Biomolecular Chemistry, 2014, 12, 8280-8287.                                                                                 | 1.5  | 22        |
| 31 | Mass Spectrometric and Computational Studies on the Reaction of Aromatic Peroxyl Radicals with<br>Phenylacetylene Using the Distonic Radical Ion Approach. Journal of Physical Chemistry A, 2014, 118,<br>3295-3306.            | 1.1  | 10        |
| 32 | Synthesis of cyclic peptide hemicryptophanes: enantioselective recognition of a chiral zwitterionic guest. Chemical Communications, 2013, 49, 8504.                                                                             | 2.2  | 41        |
| 33 | Perylene-based profluorescent nitroxides for the rapid monitoring ofÂpolyester degradation upon weathering: An assessment. Polymer Degradation and Stability, 2013, 98, 2054-2062.                                              | 2.7  | 12        |
| 34 | Radical Cascades Initiated by Intermolecular Radical Addition to Alkynes and Related Triple Bond<br>Systems. Chemical Reviews, 2013, 113, 813-853.                                                                              | 23.0 | 540       |
| 35 | Damage of polyesters by the atmospheric free radical oxidant NO <sub>3</sub> <sup>•</sup> : a product study involving model systems. Beilstein Journal of Organic Chemistry, 2013, 9, 1907-1916.                                | 1.3  | 2         |
| 36 | Reaction of Aromatic Peroxyl Radicals with Alkynes: A Mass Spectrometric and Computational Study<br>Using the Distonic Radical Ion Approach. Chemistry - an Asian Journal, 2013, 8, 450-464.                                    | 1.7  | 9         |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Reaction mechanisms: radical and radical ion reactions. Annual Reports on the Progress of Chemistry Section B, 2012, 108, 228.                                                                                                  | 0.8 | 4         |
| 38 | Total Synthesis of Mycocyclosin. Organic Letters, 2012, 14, 2402-2405.                                                                                                                                                          | 2.4 | 61        |
| 39 | Oxidative Damage of Pyrimidine Nucleosides by the Environmental Free Radical Oxidant NO3• in the<br>Absence and Presence of NO2• and Other Radical and Non-Radical Oxidants. Australian Journal of<br>Chemistry, 2012, 65, 427. | 0.5 | 2         |
| 40 | Radical Photochemistry. , 2012, , 329-345.                                                                                                                                                                                      |     | 0         |
| 41 | Damage of aromatic amino acids by the atmospheric free radical oxidant NO3Ë™ in the presence of NO2Ë™,<br>N2O4, O3 and O2. Organic and Biomolecular Chemistry, 2011, 9, 3380.                                                   | 1.5 | 23        |
| 42 | Oxidative Damage of Thymidines by the Atmospheric Free-Radical Oxidant NO3•. Australian Journal of<br>Chemistry, 2011, 64, 833.                                                                                                 | 0.5 | 4         |
| 43 | Reaction mechanisms: radical and radical ion reactions. Annual Reports on the Progress of Chemistry Section B, 2011, 107, 244.                                                                                                  | 0.8 | 2         |
| 44 | â€~Self-terminating radical cyclizations' - new insight into the mechanism of the termination step from computational studies. Journal of Physical Organic Chemistry, 2011, 24, 672-681.                                        | 0.9 | 7         |
| 45 | Very Low Energy Electrons Transform the Cyclobutaneâ€Pyrimidine Dimer into a Highly Reactive<br>Intermediate. ChemPhysChem, 2010, 11, 561-564.                                                                                  | 1.0 | 3         |
| 46 | Self-Terminating Radical Cyclizations: How Are Thiyl Radicals Performing?. European Journal of Organic Chemistry, 2010, 2010, 4902-4911.                                                                                        | 1.2 | 12        |
| 47 | Formation of pyrimidine dimer radical anions in the gas phase. Chemical Communications, 2009, , 7291.                                                                                                                           | 2.2 | 2         |
| 48 | N-Centered Radicals in Self-Terminating Radical Cyclizations:  Experimental and Computational Studies.<br>Journal of Organic Chemistry, 2008, 73, 1413-1421.                                                                    | 1.7 | 32        |
| 49 | Can the night-time atmospheric oxidant NO3Ë™ damage aromatic amino acids?. Chemical Communications, 2008, , 2121.                                                                                                               | 2.2 | 21        |
| 50 | Activation of molecular oxygen by S-radicals: experimental and computational studies on a novel oxidation of alkynes to α-diketones. Chemical Communications, 2008, , 6239.                                                     | 2.2 | 41        |
| 51 | A Computational Study of Multicomponent Orbital Interactions during the Cyclization of Silyl,<br>Germyl, and Stannyl Radicals onto Câ``N and Câ``O Multiple Bonds. Journal of Organic Chemistry, 2008,<br>73, 5821-5830.        | 1.7 | 19        |
| 52 | Dual Orbital Effects in N-Philic Cyclizations of Silyl Radicals onto Imines. Chemistry Letters, 2007, 36, 300-301.                                                                                                              | 0.7 | 4         |
| 53 | Radicals Masquerading as Electrophiles: Dual Orbital Effects in Nitrogen-Philic Acyl Radical<br>Cyclization and Related Addition Reactions. Accounts of Chemical Research, 2007, 40, 303-313.                                   | 7.6 | 136       |
| 54 | Oxidation of Aromatic Alkynes with Nitrate Radicals (NO3•): An Experimental and Computational Study<br>on a Synthetically Highly Versatile Radical. Australian Journal of Chemistry, 2007, 60, 420.                             | 0.5 | 20        |

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Unexpected dual orbital effects in radical addition reactions involving acyl, silyl and related radicals.<br>Chemical Communications, 2006, , 1067.                                                                                                                           | 2.2 | 26        |
| 56 | Mechanistic Insights into NO3•Induced Self-Terminating Radical Oxygenations, Part 1: A Computational<br>Study on NO3•and Its Addition to Alkynes. Journal of Physical Chemistry A, 2006, 110, 2195-2203.                                                                      | 1.1 | 27        |
| 57 | Computational Study on the 1,2-Rearrangement in β-(Nitroxy)vinyl and β-(Acetoxy)vinyl Radicals. Journal of Organic Chemistry, 2006, 71, 4040-4048.                                                                                                                            | 1.7 | 14        |
| 58 | Polarity-Reversal-Catalyzed Hydrostannylation Reactions: Benzeneselenol-Mediated Homolytic<br>Hydrostannylation of Electron-Rich Olefins. Helvetica Chimica Acta, 2006, 89, 2306-2311.                                                                                        | 1.0 | 8         |
| 59 | Alkoxyl Radicals asO-Synthons in Self-Terminating Radical Oxygenations: An Experimental and Theoretical Study. Synthesis, 2005, 2005, 1437-1444.                                                                                                                              | 1.2 | 0         |
| 60 | Self-Terminating, Oxidative Radical Cyclizations. Molecules, 2004, 9, 480-497.                                                                                                                                                                                                | 1.7 | 14        |
| 61 | NO3• Induced Self-Terminating Radical Oxygenations: Diastereoselective Synthesis of Anellated<br>Pyrrolidines. Australian Journal of Chemistry, 2004, 57, 1055.                                                                                                               | 0.5 | 15        |
| 62 | Dissociative electron transfer to and from pyrimidine cyclobutane dimers: An electrochemical study.<br>Organic and Biomolecular Chemistry, 2004, 2, 2742-2750.                                                                                                                | 1.5 | 23        |
| 63 | Self-Terminating Radical Oxygenations: Probing of the Scope of the Concept by Use of Various Organic<br>O-Centered Radicals. European Journal of Organic Chemistry, 2003, 2003, 3173-3178.                                                                                    | 1.2 | 19        |
| 64 | Self-terminating, oxidative radical cyclizations of medium-sized cycloalkynones with inorganic and organic oxygen-centered radicals of type XOË™: the reaction pathway depends on the nature of X. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1036-1041. | 1.3 | 14        |
| 65 | Inorganic Radicals in Organic Synthesis. Chemistry - A European Journal, 2002, 8, 340-347.                                                                                                                                                                                    | 1.7 | 27        |
| 66 | Radical oxygenations with inorganic radicals: can hydroxyl radicals (HO ) act as donors of oxygen atoms?. Tetrahedron Letters, 2002, 43, 1239-1242.                                                                                                                           | 0.7 | 20        |
| 67 | Self-Terminating, Oxidative Radical Cyclizations:Â A Novel Reaction of Acyloxyl Radicals. Journal of the<br>American Chemical Society, 2002, 124, 14-15.                                                                                                                      | 6.6 | 176       |
| 68 | Oxidative Cleavage of a Cyclobutane Pyrimidine Dimer by Photochemically Generated Nitrate Radicals<br>(NO3•). Organic Letters, 2001, 3, 1455-1458.                                                                                                                            | 2.4 | 25        |
| 69 | Nitrate Radical Induced Oxidative, Self-terminating Radical Cyclization Cascades: Improvement of Yield<br>Using a Photochemical Radical Source. Heterocycles, 2001, 55, 377.                                                                                                  | 0.4 | 21        |
| 70 | Sulfate Radical Anions (SO4•-) as Donor of Atomic Oxygen in Anionic Transannular, Self-Terminating,<br>Oxidative Radical Cyclizations. Organic Letters, 2000, 2, 3485-3488.                                                                                                   | 2.4 | 41        |
| 71 | Conceptual Knowledge Discovery and Data Analysis. Lecture Notes in Computer Science, 2000, , 421-437.                                                                                                                                                                         | 1.0 | 47        |
| 72 | Stereoselection in 5-exo radical cyclizations of polysubstituted 2-oxahex-5-enyl radicals: A systematic study of the combination substituent effect. Tetrahedron, 1999, 55, 11465-11474.                                                                                      | 1.0 | 24        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Diastereoselective formation of anellated tetrahydrofurans using a nitrate radical induced oxidative, self-terminating radical cyclization cascade. Tetrahedron, 1999, 55, 10119-10134.        | 1.0 | 42        |
| 74 | Radical Addition ofN-Bromophthalimide to Linear and Cyclic Alkynes. European Journal of Organic<br>Chemistry, 1999, 1999, 3185-3189.                                                           | 1.2 | 15        |
| 75 | Transannular Cyclizations of Mediumâ€Sized Cycloalkynes and Cycloalkynones Induced by Electro―and<br>Photochemically Generated NO <sub>3</sub> Radicals. Liebigs Annalen, 1997, 1997, 111-119. | 0.8 | 26        |
| 76 | Affinity profiles of morphine, codeine, dihydrocodeine and their glucuronides at opioid receptor subtypes. Life Sciences, 1995, 56, 793-799.                                                   | 2.0 | 151       |
| 77 | Nitrate radical reactions: interactions with alkynes. Journal of the Chemical Society, Faraday<br>Transactions, 1991, 87, 2141.                                                                | 1.7 | 7         |
| 78 | Intermolecular Radical Additions to Alkynes: Cascade-Type Radical Cyclizations. , 0, , 9-41.                                                                                                   |     | 0         |
| 79 | Degradation of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate in Soils: Indication of<br>Chemical Pathways. ACS Agricultural Science and Technology, 0, , .                        | 1.0 | 8         |