
Marta Nierychlo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8021958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ldentification of active denitrifiers in fullâ€scale nutrient removal wastewater treatment systems. Environmental Microbiology, 2016, 18, 50-64.	1.8	226
2	MiDAS: the field guide to the microbes of activated sludge. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav062.	1.4	213
3	A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems. Frontiers in Microbiology, 2017, 8, 718.	1.5	212
4	Re-evaluating the microbiology of the enhanced biological phosphorus removal process. Current Opinion in Biotechnology, 2019, 57, 111-118.	3.3	180
5	MiDAS 3: An ecosystem-specific reference database, taxonomy and knowledge platform for activated sludge and anaerobic digesters reveals species-level microbiome composition of activated sludge. Water Research, 2020, 182, 115955.	5.3	175
6	Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME Journal, 2019, 13, 1933-1946.	4.4	130
7	The impact of immigration on microbial community composition in full-scale anaerobic digesters. Scientific Reports, 2017, 7, 9343.	1.6	127
8	On the evolution and physiology of cable bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19116-19125.	3.3	127
9	MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	124
10	MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants. Nature Communications, 2022, 13, 1908.	5.8	114
11	The morphology and metabolic potential of the Chloroflexi in full-scale activated sludge wastewater treatment plants. FEMS Microbiology Ecology, 2019, 95, .	1.3	100
12	Genomic and <i>in situ</i> investigations of the novel uncultured Chloroflexi associated with 0092 morphotype filamentous bulking in activated sludge. ISME Journal, 2016, 10, 2223-2234.	4.4	88
13	" <i>Candidatus</i> Dechloromonas phosphoritropha―and " <i>Ca</i> . D. phosphorivorans― novel polyphosphate accumulating organisms abundant in wastewater treatment systems. ISME Journal, 2021, 15, 3605-3614.	4.4	80
14	Bacteria from the Genus <i>Arcobacter</i> Are Abundant in Effluent from Wastewater Treatment Plants. Applied and Environmental Microbiology, 2020, 86, .	1.4	65
15	Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters. ISME Journal, 2016, 10, 2352-2364.	4.4	62
16	Genomic insights into Candidatus Amarolinea aalborgensis gen. nov., sp. nov., associated with settleability problems in wastewater treatment plants. Systematic and Applied Microbiology, 2019, 42, 77-84.	1.2	58
17	Characterizing the growing microorganisms at species level in 46 anaerobic digesters at Danish wastewater treatment plants: A six-year survey on microbial community structure and key drivers. Water Research, 2021, 193, 116871.	5.3	51
18	Unified understanding of physico-chemical properties of activated sludge and fouling propensity. Water Research, 2017, 120, 117-132.	5.3	48

Marta Nierychlo

#	Article	IF	CITATIONS
19	Mass-immigration determines the assembly of activated sludge microbial communities. Proceedings of the United States of America, 2021, 118, .	3.3	48
20	Genomic and in Situ Analyses Reveal the Micropruina spp. as Abundant Fermentative Glycogen Accumulating Organisms in Enhanced Biological Phosphorus Removal Systems. Frontiers in Microbiology, 2018, 9, 1004.	1.5	45
21	In situ visualisation of the abundant Chloroflexi populations in full-scale anaerobic digesters and the fate of immigrating species. PLoS ONE, 2018, 13, e0206255.	1.1	37
22	Candidatus Amarolinea and Candidatus Microthrix Are Mainly Responsible for Filamentous Bulking in Danish Municipal Wastewater Treatment Plants. Frontiers in Microbiology, 2020, 11, 1214.	1.5	37
23	High and stable substrate specificities of microorganisms in enhanced biological phosphorus removal plants. Environmental Microbiology, 2013, 15, 1821-1831.	1.8	36
24	Diversity and Ecophysiology of the Genus OLB8 and Other Abundant Uncultured Saprospiraceae Genera in Global Wastewater Treatment Systems. Frontiers in Microbiology, 0, 13, .	1.5	32
25	Effects of relaxation time on fouling propensity in membrane bioreactors. Journal of Membrane Science, 2016, 504, 176-184.	4.1	28
26	Low Global Diversity of Candidatus Microthrix, a Troublesome Filamentous Organism in Full-Scale WWTPs. Frontiers in Microbiology, 2021, 12, 690251.	1.5	18
27	Microbial communities across activated sludge plants show recurring species-level seasonal patterns. ISME Communications, 2022, 2, .	1.7	18
28	Quantification of Biologically and Chemically Bound Phosphorus in Activated Sludge from Full-Scale Plants with Biological P-Removal. Environmental Science & Technology, 2022, 56, 5132-5140.	4.6	15
29	Seasonal microbial community dynamics complicates the evaluation of filamentous bulking mitigation strategies in full-scale WRRFs. Water Research, 2022, 216, 118340.	5.3	14
30	Fouling of membranes in membrane bioreactors for wastewater treatment: Planktonic bacteria can have a significant contribution. Water Environment Research, 2021, 93, 207-216.	1.3	10
31	Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal Activated Sludge Treatment Plants. PLoS ONE, 2015, 10, e0136424.	1.1	8