
Nilufar Mamadalieva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8021951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fruit Peels: Food Waste as a Valuable Source of Bioactive Natural Products for Drug Discovery. Current Issues in Molecular Biology, 2022, 44, 1960-1994.	2.4	16
2	Chemometric Analysis Based on GC-MS Chemical Profiles of Three Stachys Species from Uzbekistan and Their Biological Activity. Plants, 2022, 11, 1215.	3.5	4
3	Ecdysteroids as Potent Enzyme Inhibitors and Verification of Their Activity Using in Vitro and in Silico Docking Studies. Life, 2022, 12, 824.	2.4	1
4	A comparative study on chemical composition and antimicrobial activity of essential oils from three Phlomis species from Uzbekistan. Natural Product Research, 2021, 35, 696-701.	1.8	7
5	Chemical Composition and Biological Activity of Constituents of Otostegia bucharica. Chemistry of Natural Compounds, 2021, 57, 180-182.	0.8	1
6	GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity. Plants, 2021, 10, 124.	3.5	13
7	Sugar Containing Compounds and Biological Activities of Lagochilus setulosus. Molecules, 2021, 26, 1755.	3.8	3
8	Diterpenes from an Uzbek medicinal plant Perovskia scrophulariifolia: Their structures and anti-neuroinflammatory activity. FA¬toterapA¬A¢, 2021, 149, 104826.	2.2	9
9	Fungal glycosides: Structure and biological function. Trends in Food Science and Technology, 2021, 110, 611-651.	15.1	10
10	Meroterpenoids: A Comprehensive Update Insight on Structural Diversity and Biology. Biomolecules, 2021, 11, 957.	4.0	34
11	Discrimination of the Essential Oils Obtained from Four Apiaceae Species Using Multivariate Analysis Based on the Chemical Compositions and Their Biological Activity. Plants, 2021, 10, 1529.	3.5	8
12	Lehmanniaside, a new cycloartane triterpene glycoside from Astragalus lehmannianus. Natural Product Research, 2021, , 1-6.	1.8	1
13	The Genus Lagochilus (Lamiaceae): A Review of Its Diversity, Ethnobotany, Phytochemistry, and Pharmacology. Plants, 2021, 10, 132.	3.5	7
14	Validation of the Antioxidant and Enzyme Inhibitory Potential of Selected Triterpenes Using In Vitro and In Silico Studies, and the Evaluation of Their ADMET Properties. Molecules, 2021, 26, 6331.	3.8	28
15	Extractives and biological activities of Lamiaceae species growing in Uzbekistan. Holzforschung, 2020, 74, 96-115.	1.9	2
16	4-Benzyloxylonchocarpin and Muracatanes A-C from Ranunculus muricatus L. and Their Biological Effects. Biomolecules, 2020, 10, 1562.	4.0	8
17	Recent advances in genus <i>Mentha</i> : Phytochemistry, antimicrobial effects, and food applications. Food Frontiers, 2020, 1, 435-458.	7.4	23
18	Chemical Profiling and Discrimination of Essential Oils from Six Ferula Species Using GC Analyses Coupled with Chemometrics and Evaluation of Their Antioxidant and Enzyme Inhibitory Potential. Antibiotics, 2020, 9, 518.	3.7	10

NILUFAR MAMADALIEVA

#	Article	IF	CITATIONS
19	C ₂₈ Terpenoids from Lamiaceous Plant <i>Perovskia scrophulariifolia</i> : Their Structures and Anti-neuroinflammatory Activity. Organic Letters, 2020, 22, 7667-7670.	4.6	14
20	Phytochemical analysis and biological evaluation of Lagochilus species from Uzbekistan. Industrial Crops and Products, 2020, 154, 112715.	5.2	3
21	Synthetic Studies towards Fungal glycosides: An Overview. Current Organic Chemistry, 2020, 24, 2865-2901.	1.6	2
22	Comparative study on the chemical composition and biological activities of the essential oils of three Lagochilus species collected from Uzbekistan. Natural Product Research, 2019, 35, 1-5.	1.8	3
23	Chemical Composition and Anticholinesterase Activity of Lagochilus inebrians. Chemistry of Natural Compounds, 2019, 55, 575-577.	0.8	2
24	α-Ecdysone suppresses inflammatory responses via the Nrf2 pathway in lipopolysaccharide-stimulated RAW 264.7 cells. International Immunopharmacology, 2019, 73, 405-413.	3.8	12
25	Phytochemical and biological activities of Silene viridiflora extractives. Development and validation of a HPTLC method for quantification of 20-hydroxyecdysone. Industrial Crops and Products, 2019, 129, 542-548.	5.2	18
26	Flavone glucosides from <i>Artemisia juncea</i> . Natural Product Research, 2019, 33, 2169-2175.	1.8	7
27	Chemical composition, antimicrobial and antioxidant activities of the essential oils of three Uzbek Lamiaceae species. Natural Product Research, 2019, 33, 2394-2397.	1.8	23
28	New flavonoid glycosides from two Astragalus species (Fabaceae) and validation of their antihyperglycaemic activity using molecular modelling and in vitro studies. Industrial Crops and Products, 2018, 118, 142-148.	5.2	41
29	Composition of essential oils from four Apiaceae and Asteraceae species growing in Uzbekistan. Natural Product Research, 2018, 32, 1118-1122.	1.8	8
30	Chemical Composition of Essential Oil from Dionysia hissarica. Chemistry of Natural Compounds, 2018, 54, 593-594.	0.8	3
31	Medicinal Plants of the Apiaceae and Rutaceae Families from the Chimgan Mountains (Uzbekistan): Ethnopharmacology, Chemical Composition and Biological Activities. Current Traditional Medicine, 2018, 4, 166-183.	0.4	3
32	Composition of the essential oils of three Uzbek <i>Scutellaria</i> species (Lamiaceae) and their antioxidant activities. Natural Product Research, 2017, 31, 1172-1176.	1.8	29
33	Aromatic Medicinal Plants of the Lamiaceae Family from Uzbekistan: Ethnopharmacology, Essential Oils Composition, and Biological Activities. Medicines (Basel, Switzerland), 2017, 4, 8.	1.4	72
34	Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants. Diversity, 2017, 9, 11.	1.7	7
35	Potential of Terpenoids and Flavonoids from Asteraceae as Anti-Inflammatory, Antitumor, and Antiparasitic Agents. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-2.	1.2	19
36	Chemical Composition of the Essential Oils of Some Central Asian Nepeta Species (Lamiaceae) by GLC-MS. Natural Product Communications, 2016, 11, 1934578X1601101.	0.5	4

NILUFAR MAMADALIEVA

#	Article	IF	CITATIONS
37	Chemical profiling of Phlomis thapsoides (Lamiaceae) and in vitro testing of its biological activities. Medicinal Chemistry Research, 2016, 25, 2304-2315.	2.4	28
38	GC-MS and q-NMR based chemotaxonomic evaluation of two <i>Leonurus</i> species. Phytochemical Analysis, 2016, 27, 284-289.	2.4	11
39	Chemical Constituents of Thymus seravschanicus and Their Biological Activity. Chemistry of Natural Compounds, 2016, 52, 352-355.	0.8	5
40	Chemical Composition of the Essential Oils of Some Central Asian Nepeta Species (Lamiaceae) by GLC-MS. Natural Product Communications, 2016, 11, 1891-1893.	0.5	4
41	The minor ecdysteroids from <i>Ajuga turkestanica</i> . Phytochemical Analysis, 2015, 26, 293-300.	2.4	23
42	Diversity of Secondary Metabolites in the Genus Silene L. (Caryophyllaceae)—Structures, Distribution, and Biological Properties. Diversity, 2014, 6, 415-499.	1.7	44
43	Phytochemical analysis and bioactivity of the aerial parts of <i>Abutilon theophrasti</i> (Malvaceae), a medicinal weed. Natural Product Research, 2014, 28, 1777-1779.	1.8	17
44	Lipids from the Aerial Part of Scutellaria ramosissima. Chemistry of Natural Compounds, 2014, 50, 68-71.	0.8	7
45	Identification and isolation of non-polar compounds from the chloroform extract of <i>Scutellaria ramosissima</i> . Natural Product Research, 2013, 27, 2059-2062.	1.8	5
46	Synthesis of Substituted Thieno[2,3- <i>d</i>]pyrimidin-4-ones and Their Testing for Evaluation of Cytotoxic Activity on Mammalian Cell Models. Journal of Chemistry, 2013, 2013, 1-6.	1.9	18
47	Effect of total ecdysteroid preparation from Silene viridiflora on the immune state of experimental animals under normal and secondary immunodeficiency conditions. Pharmaceutical Chemistry Journal, 2012, 46, 222-224.	0.8	10
48	Flavonoids in <i>Scutellaria immaculata</i> and <i>S. ramosissima</i> (Lamiaceae) and their biological activity. Journal of Pharmacy and Pharmacology, 2011, 63, 1346-1357.	2.4	87
49	Phytoecdysteroids of Silene guntensis and their in vitro Cytotoxic and Antioxidant Activity. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2011, 66, 215-224.	1.4	11
50	Phytoecdysteroids of Silene guntensis and their in vitro Cytotoxic and Antioxidant Activity. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2011, 66, 0215.	1.4	5
51	Fatty-acid composition and antibacterial activity of CHCl3 extracts of three plants of the genus Silene. Chemistry of Natural Compounds, 2010, 46, 95-96.	0.8	6
52	Neutral lipids and biological activity of the CHCl3 extract of the aerial part of Silene guntensis. Chemistry of Natural Compounds, 2010, 46, 621-622.	0.8	4
53	Chemical components of Silene viridiflora and their biological properties. Chemistry of Natural Compounds, 2009, 45, 589-591.	0.8	5
54	Phytoecdysteroids and antibacterial activity of the plant Coronaria flos-cuculi. Chemistry of Natural Compounds, 2008, 44, 404-406.	0.8	7

NILUFAR MAMADALIEVA

#	Article	IF	CITATIONS
55	Phytoecdysteroids from five species of the genus Silene. Chemistry of Natural Compounds, 2007, 43, 117-118.	0.8	7
56	New Minor Ecdysteroids from Silene viridiflora. Collection of Czechoslovak Chemical Communications, 2004, 69, 1675-1680.	1.0	17
57	Preparation of 20-hydroxyecdysone-22-benzoate. Chemistry of Natural Compounds, 2004, 40, 488-491.	0.8	2
58	Phytoecdysteroids from the Silene genus. Chemistry of Natural Compounds, 2004, 40, 574-578.	0.8	7
59	Phytoecdysteroids of Silene viridiflora. Chemistry of Natural Compounds, 2003, 39, 199-203.	0.8	18
60	Title is missing!. Chemistry of Natural Compounds, 2002, 38, 179-181.	0.8	5
61	phytoecdysteroids of Silene linicola. Chemistry of Natural Compounds, 2002, 38, 268-271.	0.8	14
62	Title is missing!. Chemistry of Natural Compounds, 2000, 36, 513-515.	0.8	9
63	Synthesis of silenosterone, an insect-molting hormone. Chemistry of Natural Compounds, 1999, 35, 653-655.	0.8	2