Takanori Kokubun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/802192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of the site of injury on the spontaneous healing response in a rat model of total rupture of the anterior cruciate ligament. Connective Tissue Research, 2022, 63, 138-150.	2.3	6
2	Determination of relationship between foot arch, hindfoot, and hallux motion using Oxford foot model: Comparison between walking and running. Gait and Posture, 2022, 92, 96-102.	1.4	2
3	Structural and pathological changes in the enthesis are influenced by the muscle contraction type during exercise. Journal of Orthopaedic Research, 2022, 40, 2076-2088.	2.3	7
4	Effect of Suppression of Rotational Joint Instability on Cartilage and Meniscus Degeneration in Mouse Osteoarthritis Model. Cartilage, 2022, 13, 194760352110692.	2.7	5
5	The difference in joint instability affects the onset of cartilage degeneration or subchondral bone changes. Osteoarthritis and Cartilage, 2022, 30, 451-460.	1.3	9
6	THE ABNORMAL PATELLA DOWNWARD CONDYLE BY POSTERIOR CRUCIATE LIGAMENT DYSFUNCTION LEADS TO PATELLOFEMORAL OSTEOARTHRITIS IN THE MICE MODEL. Osteoarthritis and Cartilage, 2022, 30, S187.	1.3	0
7	EFFECT OF SUPPRESSION JOINT INSTABILITY ON SUBCHONDRAL BONE REMODELING. Osteoarthritis and Cartilage, 2022, 30, S320-S321.	1.3	0
8	SUGGESTION OF NEW PTOA MICE MODEL INDUCED BY MECHANICAL STRESS WITHOUT SURGERY. Osteoarthritis and Cartilage, 2022, 30, S154-S155.	1.3	0
9	Relationship Between the Walking Velocity Relative to the Slip Velocity and the Corrective Response. Journal of Medical and Biological Engineering, 2021, 41, 25-33.	1.8	1
10	Usefulness of Muscle Synergy Analysis in Individuals With Knee Osteoarthritis During Gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 239-248.	4.9	15
11	Effect of Various Types of Muscle Contraction with Different Running Conditions on Mouse Humerus Morphology. Life, 2021, 11, 284.	2.4	1
12	Treadmill Exercise after Controlled Abnormal Joint Movement Inhibits Cartilage Degeneration and Synovitis. Life, 2021, 11, 303.	2.4	3
13	Development of a new method for analysis of the mRNA content of knee synovial fluid. Osteoarthritis and Cartilage, 2021, 29, S109-S110.	1.3	0
14	Differences in the progression of articular cartilage and subchondral bone degeneration between two mouse models. Osteoarthritis and Cartilage, 2021, 29, S195-S196.	1.3	0
15	Basic locomotor muscle synergies used in land walking are finely tuned during underwater walking. Scientific Reports, 2021, 11, 18480.	3.3	17
16	Effects of Controlling Abnormal Joint Movement on Expression of MMP13 and TIMP-1 in Osteoarthritis. Cartilage, 2020, 11, 98-107.	2.7	17
17	Foot Kinematics of Impact Absorption and Force Exertion During Depth-Jump Using a Multi-segment Foot Model. Journal of Medical and Biological Engineering, 2020, 40, 757-765.	1.8	5
18	Evaluation of the Validity, Reliability, and Kinematic Characteristics of Multi-Segment Foot Models in Motion Capture. Sensors, 2020, 20, 4415.	3.8	4

Takanori Kokubun

#	Article	IF	CITATIONS
19	Effects of exercise therapy on joint instability in patients with osteoarthritis of the knee: A systematic review. Osteoarthritis and Cartilage Open, 2020, 2, 100114.	2.0	7
20	Controlling joint instability after anterior cruciate ligament transection inhibits the transforming growth factor-beta-mediated osteophyte formation. Osteoarthritis and Cartilage, 2020, 28, S204.	1.3	0
21	Effect of joint instability on bone-cartilage degeneration in destabilization of the medial meniscus model. Osteoarthritis and Cartilage, 2020, 28, S214-S215.	1.3	Ο
22	Impact of controlling abnormal joint movement on the effectiveness of subsequent exercise intervention in mouse model of early knee osteoarthritis. Osteoarthritis and Cartilage, 2020, 28, S471-S472.	1.3	0
23	A quantitative study to examine the effect of controlling abnormal joint instability in a mouse model of anterior cruciate ligament tibial displacement and cartilage degeneration. Osteoarthritis and Cartilage, 2020, 28, S212-S213.	1.3	Ο
24	Adaptive changes in foot placement for split-belt treadmill walking in individuals with stroke. Journal of Electromyography and Kinesiology, 2019, 48, 112-120.	1.7	4
25	Influence of Arm Joint Limitation on Interlimb Coordination during Split-belt Treadmill Walking. Advanced Biomedical Engineering, 2019, 8, 130-136.	0.6	1
26	Impact of Controlling Abnormal Joint Movement on the Effectiveness of Subsequent Exercise Intervention in Mouse Models of Early Knee Osteoarthritis. Cartilage, 2019, , 194760351988500.	2.7	12
27	Loss of Mechanical Energy Efficiency in the Sit-to-stand Motion of Acute Stroke Patients. Advanced Biomedical Engineering, 2019, 8, 92-98.	0.6	Ο
28	Acute molecular biological responses during spontaneous anterior cruciate ligament healing in a rat model. Sport Sciences for Health, 2019, 15, 659-666.	1.3	3
29	Contribution of Lower Limb Joint Movement in Adapting to Re-establish Step Length Symmetry During Split-Belt Treadmill Walking. Journal of Medical and Biological Engineering, 2019, 39, 693-701.	1.8	8
30	Controlling joint instability after anterior cruciate ligament transection inhibits transforming growth factor-beta-mediated osteophyte formation. Osteoarthritis and Cartilage, 2019, 27, 1185-1196.	1.3	22
31	Validity of inertial measurement units in assessing segment angles and mechanical energies of elderly persons during sit-to-stand motion. , 2019, , .		3
32	Verification of the adaptive parameters of the relative positions of the leading leg and the whole body at foot contact during split-belt treadmill walking. , 2019, , .		0
33	Restoring knee joint kinematics after anterior cruciate ligament injury might inhibit synovial membrane inflammation. Sport Sciences for Health, 2019, 15, 249-253.	1.3	2
34	Controlling Abnormal Joint Movement Inhibits Response of Osteophyte Formation. Cartilage, 2018, 9, 391-401.	2.7	16
35	Exercise enhances cognitive function and neurotrophin expression in the hippocampus accompanied by changes in epigenetic programming in senescence-accelerated mice. Neuroscience Letters, 2018, 665, 67-73.	2.1	40
36	Effects of controlled abnormal joint movement on the molecular biological response in intra-articular tissues during the acute phase of anterior cruciate ligament injury in a rat model. BMC Musculoskeletal Disorders, 2018, 19, 175.	1.9	8

Takanori Kokubun

#	Article	IF	CITATIONS
37	Improvement in joint instability reduces inflammatory pain of early knee osteoarthritis. Annals of Physical and Rehabilitation Medicine, 2018, 61, e135.	2.3	0
38	Integrin and fibronectin guide bridging movement of remnants during anterior cruciate ligament spontaneous healing in rat model. Annals of Physical and Rehabilitation Medicine, 2018, 61, e413-e414.	2.3	0
39	Microscopic observation of a rat spontaneous anterior cruciate ligament healing. Annals of Physical and Rehabilitation Medicine, 2018, 61, e417.	2.3	0
40	Muscle synergies underlying sit-to-stand tasks in elderly people and their relationship with kinetic characteristics. Journal of Electromyography and Kinesiology, 2017, 37, 15-20.	1.7	26
41	Controlling joint instability delays the degeneration of articular cartilage in a rat model. Osteoarthritis and Cartilage, 2017, 25, 297-308.	1.3	31
42	Acute chondrocyte response to controlling joint instability in an osteoarthritis rat model. Sport Sciences for Health, 2017, 13, 113-119.	1.3	3
43	Effect of Changing the Joint Kinematics of Knees With a Ruptured Anterior Cruciate Ligament on the Molecular Biological Responses and Spontaneous Healing in a Rat Model. American Journal of Sports Medicine, 2016, 44, 2900-2910.	4.2	25
44	Controlling the abnormal movement prevent the progression of knee osteoarthritis. Osteoarthritis and Cartilage, 2015, 23, A315.	1.3	0
45	Novel Multi-Segment Foot Model Incorporating Plantar Aponeurosis for Detailed Kinematic and Kinetic Analyses of the Foot With Application to Gait Studies. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	1