Sanjay Rathod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8021692/publications.pdf

Version: 2024-02-01

933447 752698 27 409 10 20 citations g-index h-index papers 28 28 28 521 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast cancer therapy: Dual targeting of tumor cells and tumor-associated macrophages. Acta Pharmaceutica Sinica B, 2022, 12, 1148-1162.	12.0	29
2	Phenotyping of CART cells. Methods in Cell Biology, 2022, 167, 71-80.	1.1	0
3	Novel Insights into the Immunotherapy-Based Treatment Strategy for Autoimmune Type 1 Diabetes. International Journal of Diabetology, 2022, 3, 79-96.	2.0	9
4	Nanotechnology as a Promising Approach for Detection, Diagnosis and Treatment of Food Allergens. Current Nanoscience, 2022, 18 , .	1.2	3
5	T cells in the peritoneum. International Review of Cell and Molecular Biology, 2022, , 15-41.	3.2	2
6	Origin, evolution, and pathogenesis of coronaviruses. , 2022, , 253-277.		O
7	LincRNA-immunity landscape analysis identifies EPIC1 as a regulator of tumor immune evasion and immunotherapy resistance. Science Advances, $2021, 7, .$	10.3	28
8	Nanotechnology as a Shield against COVID-19: Current Advancement and Limitations. Viruses, 2021, 13, 1224.	3.3	42
9	Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Frontiers in Oncology, 2021, 11, 694526.	2.8	5
10	Mechanistic studies of PEC-asparaginase-induced liver injury and hepatic steatosis in mice. Acta Pharmaceutica Sinica B, 2021 , 11 , 3779 - 3790 .	12.0	2
11	Adalimumab Immunogenicity Is Negatively Correlated with Anti-Hinge Antibody Levels in Patients with Rheumatoid Arthritis. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 488-497.	2.5	2
12	Genetic inhibition of NFATC2 attenuates asparaginase hypersensitivity in mice. Blood Advances, 2020, 4, 4406-4416.	5.2	10
13	PEGâ€asparaginaseâ€induced hepatic steatosis is associated with PKA activation and white adipose tissue lipolysis. FASEB Journal, 2020, 34, 1-1.	0.5	0
14	Genetic Inhibition of Nfatc2 Attenuates Asparaginase Hypersensitivity in Mice. FASEB Journal, 2020, 34, 1-1.	0.5	0
15	Asparaginase immune complexes induce Fcâ€Î³RIII–dependent hypersensitivity in naive mice. FASEB Journal, 2019, 33, 10996-11005.	0.5	4
16	Creatine based polymer for codelivery of bioengineered MicroRNA and chemodrugs against breast cancer lung metastasis. Biomaterials, 2019, 210, 25-40.	11.4	36
17	Hypersensitivity reactions to asparaginase in mice are mediated by anti-asparaginase IgE and IgG and the immunoglobulin receptors FclμRI and FclβRII. Haematologica, 2019, 104, 319-329.	3.5	15
18	Asparaginase Immune Complexes Induce FcγRIIIâ€Dependent Basophil Activation and Concentrationâ€Dependent Hypersensitivity Reactions. FASEB Journal, 2019, 33, 680.3.	0.5	0

Sanjay Rathod

#	Article	IF	CITATION
19	Asparaginase Immune Complexes Detectable after Asparaginase-Induced Hypersensitivities Activate Basophils Via Fcl³RIII. Blood, 2018, 132, 5210-5210.	1.4	0
20	Doxorubicin delivered by a redox-responsive dasatinib-containing polymeric prodrug carrier for combination therapy. Journal of Controlled Release, 2017, 258, 43-55.	9.9	95
21	TGF-Î ² 1 and contact mediated suppression by CD4+CD25+CD127â ⁻ ' T regulatory cells of patients with self-limiting hepatitis E. Human Immunology, 2016, 77, 1254-1263.	2.4	8
22	TGF- \hat{l}^21 gene \hat{a} . TGF- \hat{l}^21 levels in hepatitis E patients. Meta Gene, 2015, 6, 53-58.	0.6	5
23	Suppressive activity and altered conventional phenotype markers/mediators of regulatory T cells in patients with selfâ€imiting hepatitis E. Journal of Viral Hepatitis, 2014, 21, 141-151.	2.0	25
24	Hepatitis E rORF2p Stimulated and Unstimulated Peripheral Expression Profiling in Patients with Self-Limiting Hepatitis E Infection. Journal of Immunology Research, 2014, 2014, 1-10.	2.2	12
25	Altered expressions of peripheral CD11c, CD80, CD83 markers and associations of HLA class II allele and haplotypes in self-limiting Hepatitis E infection. Human Immunology, 2013, 74, 277-285.	2.4	7
26	Peripheral T regulatory cells and cytokines in hepatitis E infection. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 179-184.	2.9	38
27	Cytokine Profiles, CTL Response and T Cell Frequencies in the Peripheral Blood of Acute Patients and Individuals Recovered from Hepatitis E Infection. PLoS ONE, 2012, 7, e31822.	2.5	32