Nicola Tasinato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8021647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chemical Reviews, 2019, 119, 8131-8191.	47.7	167
2	Anharmonic theoretical simulations of infrared spectra of halogenated organic compounds. Journal of Chemical Physics, 2013, 139, 074310.	3.0	72
3	Theory Meets Experiment for Noncovalent Complexes: The Puzzling Case of Pnicogen Interactions. Angewandte Chemie - International Edition, 2018, 57, 13853-13857.	13.8	60
4	Development and Implementation of Advanced Fitting Methods for the Calculation of Accurate Molecular Structures. Journal of Chemical Theory and Computation, 2017, 13, 3060-3075.	5.3	50
5	Accuracy Meets Interpretability for Computational Spectroscopy by Means of Hybrid and Double-Hybrid Functionals. Frontiers in Chemistry, 2020, 8, 584203.	3.6	50
6	Unveiling the Sulfur–Sulfur Bridge: Accurate Structural and Energetic Characterization of a Homochalcogen Intermolecular Bond. Angewandte Chemie - International Edition, 2018, 57, 15822-15826.	13.8	49
7	Accurate Biomolecular Structures by the Nano-LEGO Approach: Pick the Bricks and Build Your Geometry. Journal of Chemical Theory and Computation, 2021, 17, 7290-7311.	5.3	45
8	Structural features of the carbon–sulfur chemical bond: a semi-experimental perspective. Canadian Journal of Chemistry, 2016, 94, 1065-1076.	1.1	40
9	Noncovalent Interactions and Internal Dynamics in Pyridine–Ammonia: A Combined Quantum hemical and Microwave Spectroscopy Study. Chemistry - A European Journal, 2017, 23, 4876-4883.	3.3	39
10	Anharmonic force field and vibrational dynamics of CH2F2 up to 5000 cmâ^'1 studied by Fourier transform infrared spectroscopy and state-of-the-art <i>ab initio</i> calculations. Journal of Chemical Physics, 2012, 136, 214302.	3.0	37
11	An integrated experimental and quantum-chemical investigation on the vibrational spectra of chlorofluoromethane. Journal of Chemical Physics, 2013, 139, 164302.	3.0	36
12	Unveiling the non-covalent interactions of molecular homodimers by dispersion-corrected DFT calculations and collision-induced broadening of ro-vibrational transitions: application to (CH2F2)2 and (SO2)2. Physical Chemistry Chemical Physics, 2015, 17, 5659-5669.	2.8	36
13	Rotational and Infrared Spectroscopy of Ethanimine: A Route toward Its Astrophysical and Planetary Detection. Astrophysical Journal, 2018, 855, 123.	4.5	35
14	VMS-ROT: A New Module of the Virtual Multifrequency Spectrometer for Simulation, Interpretation, and Fitting of Rotational Spectra. Journal of Chemical Theory and Computation, 2017, 13, 4382-4396.	5.3	34
15	Development and Validation of a Parameter-Free Model Chemistry for the Computation of Reliable Reaction Rates. Journal of Chemical Theory and Computation, 2021, 17, 4913-4928.	5.3	34
16	Adsorption of F2CCFCl on TiO2 nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations. Applied Surface Science, 2015, 353, 986-994.	6.1	28
17	Infrared Spectra, Integrated Band Intensities, and Anharmonic Force Field of H2C=CHF. Journal of Physical Chemistry A, 2009, 113, 1497-1504.	2.5	26
18	Spectroscopic measurements of SO2 line parameters in the 9.2â€,μm atmospheric region and theoretical determination of self-broadening coefficients. Journal of Chemical Physics, 2010, 132, 044315.	3.0	26

NICOLA TASINATO

#	Article	IF	CITATIONS
19	On the competition between weak O Hâ∢F and C Hâ∢F hydrogen bonds, in cooperation with C Hâ∢O contacts, in the difluoromethane – tert-butyl alcohol cluster. Journal of Molecular Spectroscopy, 2017, 337, 90-95.	1.2	26
20	Microwave, High-Resolution Infrared, and Quantum Chemical Investigations of CHBrF ₂ : Ground and v ₄ = 1 States. Journal of Physical Chemistry A, 2011, 115, 453-459.	2.5	25
21	Computing sextic centrifugal distortion constants by DFT: A benchmark analysis on halogenated compounds. Journal of Molecular Spectroscopy, 2017, 335, 117-125.	1.2	24
22	Correct Modeling of Cisplatin: a Paradigmatic Case. Angewandte Chemie - International Edition, 2017, 56, 13838-13841.	13.8	24
23	A twist on the reaction of the CN radical with methylamine in the interstellar medium: new hints from a state-of-the-art quantum-chemical study. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4298-4310.	4.4	24
24	DFT meets the segmented polarization consistent basis sets: Performances in the computation of molecular structures, rotational and vibrational spectroscopic properties. Journal of Molecular Structure, 2020, 1208, 127886.	3.6	23
25	Quantum cascade laser spectroscopy: diagnostics to non-linear optics. Journal of Modern Optics, 2009, 56, 2034-2048.	1.3	22
26	Quantum-chemical ab initio investigation of the vibrational spectrum of halon 1113 and its anharmonic force field: A joint experimental and computational approach. Chemical Physics, 2012, 397, 55-64.	1.9	22
27	Time dependent measurements of nitrous oxide and carbon dioxide collisional relaxation processes by a frequency down-chirped quantum cascade laser: Rapid passage signals and the time dependence of collisional processes. Journal of Chemical Physics, 2010, 132, 164301.	3.0	20
28	Toward a Complete Understanding of the Vinyl Fluoride Spectrum in the Atmospheric Region. ChemPhysChem, 2011, 12, 356-363.	2.1	20
29	N2-, O2- and He-collision-induced broadening of sulfur dioxide ro-vibrational lines in the 9.2μm atmospheric window. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 373-379.	3.9	20
30	The Role of State-of-the-Art Quantum-Chemical Calculations in Astrochemistry: Formation Route and Spectroscopy of Ethanimine as a Paradigmatic Case. Molecules, 2020, 25, 2873.	3.8	20
31	Spectroscopic study of CHBrF2 up to 9500â€,cmâ^'1: Vibrational analysis, integrated band intensities, and <i>ab initio</i> calculations. Journal of Chemical Physics, 2010, 133, 044310.	3.0	19
32	Accurate Vibrational–Rotational Parameters and Infrared Intensities of 1-Bromo-1-fluoroethene: A Joint Experimental Analysis and Ab Initio Study. Journal of Physical Chemistry A, 2017, 121, 3305-3317.	2.5	18
33	CO2-, He- and H2-broadening coefficients of SO2 for ν1 band and ground state transitions for astrophysical applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203, 367-376.	2.3	18
34	Reinvestigation of the Deceptively Simple Reaction of Toluene with OH and the Fate of the Benzyl Radical: The "Hidden―Routes to Cresols and Benzaldehyde. Journal of Physical Chemistry A, 2020, 124, 5917-5930.	2.5	18
35	Determination of the vinyl fluoride line intensities by TDL spectroscopy: the object oriented approach of Visual Line Shape Fitting Program to line profile analysis. Molecular Physics, 2010, 108, 677-685.	1.7	17
36	A complete listing of sulfur dioxide self-broadening coefficients for atmospheric applications by coupling infrared and microwave spectroscopy to semiclassical calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130, 233-248.	2.3	17

NICOLA TASINATO

#	Article	IF	CITATIONS
37	Study of the Vibrational Spectra and Absorption Cross Sections of 1-Chloro-1-fluoroethene by a Joint Experimental and Ab Initio Approach. Journal of Physical Chemistry A, 2016, 120, 8369-8386.	2.5	17
38	State-of-the-art computation of the rotational and IR spectra of the methyl-cyclopropyl cation: hints on its detection in space. Physical Chemistry Chemical Physics, 2019, 21, 3431-3439.	2.8	17
39	An investigation of collisional processes in a Dicke narrowed transition of water vapor in the 7.8â€,μm spectral region by frequency down-chirped quantum cascade laser spectroscopy. Journal of Chemical Physics, 2010, 132, 044316.	3.0	16
40	Modelling the anharmonic and Coriolis resonances within the six level polyad involving the ν4 fundamental in the ro-vibrational spectrum of vinyl fluoride. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 1240-1249.	2.3	16
41	What are the spectroscopic properties of HFC-32? Answers from DFT. International Journal of Quantum Chemistry, 2014, 114, 1472-1485.	2.0	16
42	Towards the SMART workflow system for computational spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 26034-26052.	2.8	16
43	Accurate Quantum Chemical Spectroscopic Characterization of Glycolic Acid: A Route Toward its Astrophysical Detection. Journal of Physical Chemistry A, 2022, 126, 2373-2387.	2.5	16
44	Self-, N ₂ -, O ₂ -broadening coefficients and line parameters of HFC-32 for <i>Î1⁄2</i> ₇ band and ground state transitions from infrared and microwave spectroscopy. Molecular Physics, 2014, 112, 2384-2396.	1.7	15
45	Molecular synthons for accurate structural determinations: the equilibrium geometry of 1-chloro-1-fluoroethene. Physical Chemistry Chemical Physics, 2019, 21, 3615-3625.	2.8	15
46	The energetic of (CH2F2)2 investigated by TDL IR spectroscopy and DFT computations: From collision induced relaxation of ro-vibrational transitions to non-covalent interactions. Journal of Chemical Physics, 2015, 142, 134310.	3.0	14
47	FTIR spectra of CH2F2 in the 1000–1300 cmâ^'1 region: Rovibrational analysis and modeling of the Coriolis and anharmonic resonances in the μ23, ν25, ν27, ν9 and 2ν4 polyad. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 175, 8-16.	2.3	14
48	Looking for the Elusive Imine Tautomer of Creatinine: Different States of Aggregation Studied by Quantum Chemistry and Molecular Spectroscopy. ChemPlusChem, 2021, 86, 1374-1386.	2.8	14
49	Exploring the Maze of C ₂ N ₂ H ₅ Radicals and Their Fragments in the Interstellar Medium with the Help of Quantum-Chemical Computations. ACS Earth and Space Chemistry, 2020, 4, 774-782.	2.7	13
50	High-Resolution Infrared Study of Vinyl Fluoride in the 750â^'1050 cm-1 Region:  Rovibrational Analysis and Resonances Involving the ν8, ν10, and ν11 Fundamentals. Journal of Physical Chemistry A, 2006, 110, 13412-13418.	2.5	12
51	Anharmonic resonances in the CH chromophore overtone spectra of CHBrF ₂ . Molecular Physics, 2011, 109, 2163-2172.	1.7	12
52	Sextic centrifugal distortion constants: interplay of density functional and basis set for accurate yet feasible computations. Molecular Physics, 2020, 118, e1734678.	1.7	12
53	lsomerization and Fragmentation Reactions on the [C ₂ SH ₄] Potential Energy Surface: The Metastable Thione <i>S</i> -Methylide Isomer. Journal of Organic Chemistry, 2021, 86, 2941-2956.	3.2	11
54	Tailorâ€made computational protocols for precise characterization of small biological building blocks using QM and MM approaches. Biopolymers, 2018, 109, e23109.	2.4	10

NICOLA TASINATO

#	Article	IF	CITATIONS
55	Modeling amino-acid side chain infrared spectra: the case of carboxylic residues. Physical Chemistry Chemical Physics, 2020, 22, 3008-3016.	2.8	10
56	Unraveling the role of additional OH-radicals in the H–Abstraction from Dimethyl sulfide using quantum chemical computations. Chemical Physics Letters, 2020, 739, 136963.	2.6	9
57	The Spectroscopic Characterization of Halogenated Pollutants through the Interplay between Theory and Experiment: Application to R1122. Molecules, 2022, 27, 748.	3.8	8
58	Collisional Effects On Quantum Cascade Laser Induced Molecular Alignment. AIP Conference Proceedings, 2010, , .	0.4	7
59	A Bit of Sugar on TiO ₂ : Quantum Chemical Insights on the Interfacial Interaction of Glycolaldehyde over Titanium Dioxide. Journal of Physical Chemistry C, 2018, 122, 6041-6051.	3.1	7
60	Theory Meets Experiment for Noncovalent Complexes: The Puzzling Case of Pnicogen Interactions. Angewandte Chemie, 2018, 130, 14049-14053.	2.0	7
61	Insights into the interaction between CH2F2 and titanium dioxide: DRIFT spectroscopy and DFT analysis of the adsorption energetics. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 1614-1620.	3.9	6
	Dipolar 1,3 ycloaddition of thioformaldehyde <i>S</i> â€methylide (<scp> CH ₂ SCH) Tj ETQq0</scp>	0 0 rgBT /	Overlock 10 T
62	₃ , <scp> SO ₂ </scp> , <scp>. Journal of Computational Chemistry, 2022, 43, 1420-1433</scp>	3.3	6
63	A Computational Journey across Nitroxide Radicals: From Structure to Spectroscopic Properties and Beyond. Molecules, 2021, 26, 7404.	3.8	5
64	Line-by-line spectroscopic parameters of HFC-32 ro-vibrational transitions within the atmospheric window around 8.2â€1¼m. Journal of Molecular Spectroscopy, 2018, 348, 57-63.	1.2	4
65	Gliding on Ice in Search of Accurate and Cost-Effective Computational Methods for Astrochemistry on Grains: The Puzzling Case of the HCN Isomerization. Journal of Chemical Theory and Computation, 2022, 18, 3111-3121.	5.3	4
66	Investigation of CHBrF2 adsorbed on TiO2 through IR spectroscopy and DFT calculations. Vibrational Spectroscopy, 2013, 65, 142-146.	2.2	3
67	Collision induced broadening of ν1 band and ground state spectral lines of sulfur dioxide perturbed by N2 and O2. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 198, 155-163.	2.3	3
68	A computational insight into the relationship between side chain IR line shapes and local environment in fibril-like structures. Journal of Chemical Physics, 2021, 154, 084105.	3.0	1
69	Correct Modeling of Cisplatin: a Paradigmatic Case. Angewandte Chemie, 2017, 129, 14026-14029.	2.0	0