Oleg A Ageev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8021548/publications.pdf

Version: 2024-02-01

	567281	580821
708	15	25
citations	h-index	g-index
50		660
50	50	660
docs citations	times ranked	citing authors
	citations 50	708 15 citations h-index 50 50

#	Article	IF	CITATIONS
1	Oriented Crystallization of Mixedâ€Cation Tin Halides for Highly Efficient and Stable Leadâ€Free Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2002230.	14.9	64
2	Piezoelectric Response of Multi-Walled Carbon Nanotubes. Materials, 2018, 11, 638.	2.9	48
3	Local Organization of Graphene Network Inside Graphene/Polymer Composites. Advanced Functional Materials, 2012, 22, 1311-1318.	14.9	44
4	Graphene Network Organisation in Conductive Polymer Composites. Macromolecular Chemistry and Physics, 2012, 213, 1251-1258.	2.2	41
5	Memristive switching mechanism of vertically aligned carbon nanotubes. Carbon, 2017, 123, 514-524.	10.3	40
6	Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy. Technical Physics, 2013, 58, 1831-1836.	0.7	38
7	Study of the resistive switching of vertically aligned carbon nanotubes by scanning tunneling microscopy. Physics of the Solid State, 2015, 57, 825-831.	0.6	27
8	Highâ€Performance Semitransparent and Bifacial Perovskite Solar Cells with MoO <i></i> hylag/WO <i></i> hag/WO <i>sub></i> hag/Wo <i>sub></i> hag/wo <i>sub></i> haterials Interfaces, 2020, 7, 2000591.	3.7	26
9	Synthesis and Memristor Effect of a Forming-Free ZnO Nanocrystalline Films. Nanomaterials, 2020, 10, 1007.	4.1	26
10	Hybrid Analytical–Monte Carlo Model of In/GaAs(001) Droplet Epitaxy: Theory and Experiment. Physica Status Solidi (B): Basic Research, 2018, 255, 1700360.	1.5	25
11	Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy. Physics of the Solid State, 2016, 58, 309-314.	0.6	22
12	Mechanism of nucleation and critical layer formation during In/GaAs droplet epitaxy. Nanotechnology, 2019, 30, 505601.	2.6	21
13	Monte Carlo simulation of the kinetic effects on GaAs/GaAs(001) MBE growth. Journal of Crystal Growth, 2017, 457, 46-51.	1.5	20
14	Morphology and local electrical properties of PTB7:PC ₇₁ BM blends. Journal of Materials Chemistry A, 2015, 3, 8706-8714.	10.3	18
15	Simulation of the formation of nanosize oxide structures by local anode oxidation of the metal surface. Technical Physics, 2015, 60, 717-723.	0.7	17
16	Determination of the electrical resistivity of vertically aligned carbon nanotubes by scanning probe microscopy. Technical Physics, 2015, 60, 1044-1050.	0.7	16
17	Kinetic Monte Carlo simulation of GaAs(001) MBE growth considering the V/III flux ratio effect. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 041804.	1.2	15
18	Pyrrole-like defects as origin of piezoelectric effect in nitrogen-doped carbon nanotubes. Carbon, 2022, 190, 348-358.	10.3	14

#	Article	IF	Citations
19	AFM-based model of percolation in graphene-based polymer nanocomposites. Composites Science and Technology, 2014, 95, 38-43.	7.8	13
20	Piezoelectric Energy Harvester Based on LiNbO3 Thin Films. Materials, 2020, 13, 3984.	2.9	11
21	Anomalous piezoelectricity and conductivity in aligned carbon nanotubes. Journal of Materials Chemistry C, 2021, 9, 6014-6021.	5.5	11
22	Towards Scalable Large-Area Pulsed Laser Deposition. Materials, 2021, 14, 4854.	2.9	11
23	Nanoscale-Resistive Switching in Forming-Free Zinc Oxide Memristive Structures. Nanomaterials, 2022, 12, 455.	4.1	11
24	Dependence of the memristor effect of carbon nanotube bundles on the pressing force. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 78-82.	2.1	10
25	Analysis of the Piezoelectric Properties of Aligned Multi-Walled Carbon Nanotubes. Nanomaterials, 2021, 11, 2912.	4.1	10
26	Analysis of Carbon Nanotube Arrays for Their Potential Use as Adhesives Under Harsh Conditions as in Space Technology. Tribology Letters, 2019, 67, 1.	2.6	9
27	Oxygen Pressure Influence on Properties of Nanocrystalline LiNbO3 Films Grown by Laser Ablation. Nanomaterials, 2020, 10, 1371.	4.1	9
28	Modeling of Catalytic Centers Formation Processes during Annealing of Multilayer Nanosized Metal Films for Carbon Nanotubes Growth. Nanomaterials, 2020, 10, 554.	4.1	9
29	Independent Control Over Size and Surface Density of Droplet Epitaxial Nanostructures Using Ultra-Low Arsenic Fluxes. Nanomaterials, 2021, 11, 1184.	4.1	8
30	The Effect of Growth Parameters on Electrophysical and Memristive Properties of Vanadium Oxide Thin Films. Molecules, 2021, 26, 118.	3.8	8
31	Memristors based on strained multi-walled carbon nanotubes. Diamond and Related Materials, 2022, 123, 108858.	3.9	8
32	Resistive Switching of GaAs Oxide Nanostructures. Materials, 2020, 13, 3451.	2.9	7
33	Formingâ€Free Resistive Switching of Electrochemical Titanium Oxide Localized Nanostructures: Anodization, Chemical Composition, Nanoscale Size Effects, and Memristive Storage. Advanced Electronic Materials, 2022, 8, .	5.1	7
34	Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes. Semiconductors, 2015, 49, 1743-1748.	0.5	6
35	Scanning Probe Techniques for Characterization of Vertically Aligned Carbon Nanotubes. , 0, , .		6
36	Sublayer material as a critical factor of piezoelectric response in nitrogen-doped carbon nanotubes. Diamond and Related Materials, 2022, 126, 109069.	3.9	6

#	Article	IF	CITATIONS
37	Analysis of modes of nanoscale profiling during ion-stimulated deposition of W and Pt using the method of focused ion beams. Nanotechnologies in Russia, 2014, 9, 145-150.	0.7	5
38	Investigation of the Nanodiagnostics Probe Modes for Semiconductor Resistivity Measurements by Atomic Force Microscopy. Advanced Materials Research, 2014, 894, 374-378.	0.3	4
39	Modelling of the Influence of a Pointed Field Emission Cathode Design from the Silicon Carbide with Graphene Film on the Electric Field Strength. Applied Mechanics and Materials, 0, 752-753, 163-167.	0.2	4
40	Nanometer field emission structures on the basis of graphene on SiC with local change of the emitting surface. AIP Conference Proceedings, 2016 , , .	0.4	4
41	Vertically Aligned Carbon Nanotubes Production by PECVD. , 2019, , .		4
42	Investigation of Effect of Geometrical Parameters of Vertically Aligned Carbon Nanotubes on their Mechanical Properties. Advanced Materials Research, 2014, 894, 355-359.	0.3	3
43	Investigation of the local profiling of the solid surfaces using focused ion beam. AIP Conference Proceedings, 2019, , .	0.4	1
44	Lithium Niobate Films for Piezoelectric Nanogenerators Based on Hybrid Carbon Nanostructures. , 2019, , .		1
45	Study of the effect of ion-stimulated deposition assisted by a pulsed laser on the properties of zinc oxide nanocrystalline films. Surface Engineering and Applied Electrochemistry, 2014, 50, 371-376.	0.8	0
46	Mathematical Model of the Influence of Chemisorption Process on Electrophysical Parameters of Nanosized ZnO Films. Key Engineering Materials, 2016, 709, 82-85.	0.4	0
47	Application of Probe Nanotechnologies for Memristor Structures Formation and Characterization. , $0, , .$		0
48	Formation, Phase Composition and Memristive Properties of Titanium Oxide Nanodots. Materials Proceedings, 2020, 4, .	0.2	0
49	Synthesis and Resistive Switching of Nanocrystalline Vanadium Oxide Films. Materials Proceedings, 0, ,	0.2	0
50	Formation of nanocrystalline BaTiO3 thin films by pulsed laser deposition. , 2022, , .		0