João Azevedo-Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8021262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Sharks to Yeasts: Squalene in the Development of Vaccine Adjuvants. Pharmaceuticals, 2022, 15, 265.	3.8	25
2	Cytoskeleton disruption by the metabolic inhibitor 3-bromopyruvate: implications in cancer therapy. , 2022, 39, .		1
3	New insights into the acetate uptake transporter (AceTr) family: Unveiling amino acid residues critical for specificity and activity. Computational and Structural Biotechnology Journal, 2021, 19, 4412-4425.	4.1	6
4	Phytosterols and Novel Triterpenes Recovered from Industrial Fermentation Coproducts Exert In Vitro Anti-Inflammatory Activity in Macrophages. Pharmaceuticals, 2021, 14, 583.	3.8	12
5	Membrane transporters in the bioproduction of organic acids: state of the art and future perspectives for industrial applications. FEMS Microbiology Letters, 2020, 367, .	1.8	22
6	The Role of Diet Related Short-Chain Fatty Acids in Colorectal Cancer Metabolism and Survival: Prevention and Therapeutic Implications. Current Medicinal Chemistry, 2020, 27, 4087-4108.	2.4	72
7	MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions. Biological Chemistry, 2019, 400, 787-799.	2.5	11
8	The acetate uptake transporter family motif "NPAPLGL(M/S)―is essential for substrate uptake. Fungal Genetics and Biology, 2019, 122, 1-10.	2.1	17
9	Colorectal Cancer Cells Increase the Production of Short Chain Fatty Acids by Propionibacterium freudenreichii Impacting on Cancer Cells Survival. Frontiers in Nutrition, 2018, 5, 44.	3.7	43
10	The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. Journal of Bioenergetics and Biomembranes, 2016, 48, 349-362.	2.3	55
11	Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications. Oncotarget, 2016, 7, 70639-70653.	1.8	37
12	The cytotoxicity of 3-bromopyruvate in breast cancer cells depends on extracellular pH. Biochemical Journal, 2015, 467, 247-258.	3.7	30
13	Monocarboxylate transporters as targets and mediators in cancer therapy response. Histology and Histopathology, 2014, 29, 1511-24.	0.7	87
14	High level expression and facile purification of recombinant silk-elastin-like polymers in auto induction shake flask cultures. AMB Express, 2013, 3, 11.	3.0	33
15	Batch production of a silk-elastin-like protein in E. coli BL21(DE3): key parameters for optimisation. Microbial Cell Factories, 2013, 12, 21.	4.0	51
16	Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. Journal of Bioenergetics and Biomembranes, 2012, 44, 141-153.	2.3	60
17	Role of monocarboxylate transporters in human cancers: state of the art. Journal of Bioenergetics and Biomembranes, 2012, 44, 127-139.	2.3	330