Pedro Brites

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8020883/publications.pdf

Version: 2024-02-01

361413 361022 2,121 37 20 35 h-index citations g-index papers 38 38 38 2504 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Variants in ADD1 cause intellectual disability, corpus callosum dysgenesis, and ventriculomegaly in humans. Genetics in Medicine, 2022, 24, 319-331.	2.4	6
2	Plasmalogens regulate the AKT-ULK1 signaling pathway to control the position of the axon initial segment. Progress in Neurobiology, 2021, 205, 102123.	5.7	10
3	Profilin 1 delivery tunes cytoskeletal dynamics toward CNS axon regeneration. Journal of Clinical Investigation, 2020, 130, 2024-2040.	8.2	30
4	Leukodystrophy caused by plasmalogen deficiency rescued by glyceryl 1â€myristyl ether treatment. Brain Pathology, 2019, 29, 622-639.	4.1	30
5	Autonomous Purkinje cell axonal dystrophy causes ataxia in peroxisomal multifunctional proteinâ€2 deficiency. Brain Pathology, 2018, 28, 631-643.	4.1	10
6	Mitochondrial disruption in peroxisome deficient cells is hepatocyte selective but is not mediated by common hepatic peroxisomal metabolites. Mitochondrion, 2018, 39, 51-59.	3.4	26
7	The Dyslexia-susceptibility Protein KIAA0319 Inhibits Axon Growth Through Smad2 Signaling. Cerebral Cortex, 2017, 27, 1732-1747.	2.9	29
8	Early-onset Purkinje cell dysfunction underlies cerebellar ataxia in peroxisomal multifunctional protein-2 deficiency. Neurobiology of Disease, 2016, 94, 157-168.	4.4	15
9	Axonal pathology in <scp>K</scp> rabbe's disease: The cytoskeleton as an emerging therapeutic target. Journal of Neuroscience Research, 2016, 94, 1037-1041.	2.9	10
10	The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter. Cell Reports, 2016, 15, 490-498.	6.4	95
11	Myelin Lipids Inhibit Axon Regeneration Following Spinal Cord Injury: a Novel Perspective for Therapy. Molecular Neurobiology, 2016, 53, 1052-1064.	4.0	23
12	Plasmalogens and fatty alcohols in rhizomelic chondrodysplasia punctata and Sjögren‣arsson syndrome. Journal of Inherited Metabolic Disease, 2015, 38, 111-121.	3.6	25
13	Plasmalogen phospholipids protect internodal myelin from oxidative damage. Free Radical Biology and Medicine, 2015, 84, 296-310.	2.9	65
14	Poly(Trimethylene Carbonate-co-Îμ-Caprolactone) Promotes Axonal Growth. PLoS ONE, 2014, 9, e88593.	2.5	24
15	Morphometric analysis of sciatic nerve images: A directional gradient approach. , 2014, , .		0
16	A PEX7-Centered Perspective on the Peroxisomal Targeting Signal Type 2-Mediated Protein Import Pathway. Molecular and Cellular Biology, 2014, 34, 2917-2928.	2.3	34
17	Early axonal loss accompanied by impaired endocytosis, abnormal axonal transport, and decreased microtubule stability occur in the model of Krabbe's disease. Neurobiology of Disease, 2014, 66, 92-103.	4.4	55
18	Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination. Journal of Clinical Investigation, 2014, 124, 2560-2570.	8.2	103

#	Article	IF	Citations
19	Advances and Pitfalls of Cell Therapy in Metabolic Leukodystrophies. Cell Transplantation, 2013, 22, 189-204.	2.5	17
20	The importance of ether-phospholipids: A view from the perspective of mouse models. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1501-1508.	3.8	65
21	Comparative profiling of the peroxisomal proteome of wildtype and Pex7 knockout mice by quantitative mass spectrometry. International Journal of Mass Spectrometry, 2012, 312, 30-40.	1.5	21
22	Alkyl-Glycerol Rescues Plasmalogen Levels and Pathology of Ether-Phospholipid Deficient Mice. PLoS ONE, 2011, 6, e28539.	2.5	104
23	Biosynthesis of ether-phospholipids including plasmalogens, peroxisomes and human disease: new insights into an old problem. Clinical Lipidology, 2010, 5, 379-386.	0.4	21
24	Peroxisomes, lipid metabolism and lipotoxicity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 272-280.	2.4	135
25	Ataxia with loss of Purkinje cells in a mouse model for Refsum disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17712-17717.	7.1	108
26	Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain, 2008, 132, 482-492.	7.6	89
27	Organization and integration of biomedical knowledge with concept maps for key peroxisomal pathways. Bioinformatics, 2008, 24, i21-i27.	4.1	7
28	The mouse as a model to understand peroxisomal biogenesis and its disorders. Drug Discovery Today: Disease Models, 2004, 1, 193-198.	1.2	3
29	Functions and biosynthesis of plasmalogens in health and disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1636, 219-231.	2.4	329
30	Identification of PEX7 as the Second Gene Involved in Refsum Disease. American Journal of Human Genetics, 2003, 72, 471-477.	6.2	151
31	Impaired neuronal migration and endochondral ossification in Pex7 knockout mice: a model for rhizomelic chondrodysplasia punctata. Human Molecular Genetics, 2003, 12, 2255-2267.	2.9	97
32	Identification of PEX7 as the Second Gene Involved in Refsum Disease. Advances in Experimental Medicine and Biology, 2003, 544, 69-70.	1.6	13
33	Mutational Spectrum in the PEX7 Gene and Functional Analysis of Mutant Alleles in 78 Patients with Rhizomelic Chondrodysplasia Punctata Type 1. American Journal of Human Genetics, 2002, 70, 612-624.	6.2	92
34	Molecular basis of rhizomelic chondrodysplasia punctata type I: High frequency of the Leu-292 Stop mutation in 38 patients. Journal of Inherited Metabolic Disease, 1998, 21, 306-308.	3.6	10
35	Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nature Genetics, 1997, 15, 377-380.	21.4	260
36	Mutational Analysis of an X-Linked Adrenoleukodystrophy (ALD) Patient with Detectable ALD Protein. Annals of the New York Academy of Sciences, 1996, 804, 756-759.	3.8	1

PEDRO BRITES

#	Article	IF	CITATIONS
37	Pleiotropic effects of fenretinide in neuroblastoma cell lines and multicellular tumor spheroids. International Journal of Oncology, 0, , .	3.3	8