List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8020676/publications.pdf

Version: 2024-02-01

304602 377752 1,324 43 22 34 citations h-index g-index papers 43 43 43 185 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	A strongly convergent Mann-type inertial algorithm for solving split variational inclusion problems. Optimization and Engineering, 2021, 22, 159-185.	1.3	14
2	A new strong convergence for solving split variational inclusion problems. Numerical Algorithms, 2021, 86, 565-591.	1.1	11
3	An inertial Popov's method for solving pseudomonotone variational inequalities. Optimization Letters, 2021, 15, 757-777.	0.9	16
4	New hybrid projection methods for variational inequalities involving pseudomonotone mappings. Optimization and Engineering, 2021, 22, 363-386.	1.3	9
5	New algorithms and convergence theorems for solving variational inequalities with non-Lipschitz mappings. Numerical Algorithms, 2021, 87, 527-549.	1.1	30
6	Strong convergence of extragradient methods for solving bilevel pseudo-monotone variational inequality problems. Numerical Algorithms, 2020, 83, 1123-1143.	1.1	25
7	A strong convergence theorem for Tseng's extragradient method for solving variational inequality problems. Optimization Letters, 2020, 14, 1157-1175.	0.9	38
8	New strong convergence theorem of the inertial projection and contraction method for variational inequality problems. Numerical Algorithms, 2020, 84, 285-305.	1.1	33
9	Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings. Numerical Algorithms, 2020, 84, 795-823.	1.1	39
10	A Novel Inertial Projection and Contraction Method for Solving Pseudomonotone Variational Inequality Problems. Acta Applicandae Mathematicae, 2020, 169, 217-245.	0.5	59
11	Mann-type algorithms for variational inequality problems and fixed point problems. Optimization, 2020, 69, 2305-2326.	1.0	6
12	A strong convergence of modified subgradient extragradient method for solving bilevel pseudomonotone variational inequality problems. Optimization, 2020, 69, 1313-1334.	1.0	14
13	Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems. Optimization Letters, 2020, 14, 115-144.	0.9	54
14	Improved inertial extragradient methods for solving pseudo-monotone variational inequalities. Optimization, 2020, , 1-24.	1.0	15
15	Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities. Acta Applicandae Mathematicae, 2020, 170, 319-345.	0.5	13
16	Three new iterative methods for solving inclusion problems and related problems. Computational and Applied Mathematics, 2020, 39, $1.$	1.0	6
17	A new iterative method for solving pseudomonotone variational inequalities with non-Lipschitz operators. Computational and Applied Mathematics, 2020, 39, 1.	1.0	18
18	A new low-cost double projection method for solving variational inequalities. Optimization and Engineering, 2020, 21, 1613-1634.	1.3	23

#	Article	IF	Citations
19	Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems. Numerical Algorithms, 2019, 80, 1283-1307.	1.1	57
20	New algorithms for the split variational inclusion problems and application to split feasibility problems. Optimization, 2019, 68, 2339-2367.	1.0	22
21	Accelerated hybrid and shrinking projection methods for variational inequality problems. Optimization, 2019, 68, 981-998.	1.0	9
22	Inertial methods for fixed point problems and zero point problems of the sum of two monotone mappings. Optimization, 2019, 68, 1037-1072.	1.0	15
23	Accelerated Subgradient Extragradient Methods for Variational Inequality Problems. Journal of Scientific Computing, 2019, 80, 1438-1462.	1.1	34
24	Two simple projection-type methods for solving variational inequalities. Analysis and Mathematical Physics, 2019, 9, 2203-2225.	0.6	23
25	Strong convergence of extragradient methods with a new step size for solving variational inequality problems. Computational and Applied Mathematics, 2019, 38, 1.	1.0	14
26	Modified Tseng's extragradient methods for solving pseudo-monotone variational inequalities. Optimization, 2019, 68, 2207-2226.	1.0	35
27	Strong convergence of a forward–backward splitting method with a new step size for solving monotone inclusions. Computational and Applied Mathematics, 2019, 38, 1.	1.0	35
28	Two strong convergence subgradient extragradient methods for solving variational inequalities in Hilbert spaces. Japan Journal of Industrial and Applied Mathematics, 2019, 36, 299-321.	0.5	13
29	Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities. Journal of Fixed Point Theory and Applications, 2019, 21, 1.	0.6	26
30	Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems. Numerical Algorithms, 2019, 82, 761-789.	1.1	31
31	A new projection method for a class of variational inequalities. Applicable Analysis, 2019, 98, 2423-2439.	0.6	13
32	Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. Journal of Computational and Applied Mathematics, 2018, 341, 80-98.	1.1	72
33	A new approximation method for finding common fixed points of families of demicontractive operators and applications. Journal of Fixed Point Theory and Applications, 2018, 20, 1.	0.6	7
34	Weak and strong convergence theorems for variational inequality problems. Numerical Algorithms, 2018, 78, 1045-1060.	1.1	97
35	New extragradient-like algorithms for strongly pseudomonotone variational inequalities. Journal of Global Optimization, 2018, 70, 385-399.	1.1	48
36	Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems. Optimization, 2018, 67, 83-102.	1.0	55

#	Article	IF	CITATIONS
37	Modified subgradient extragradient method for variational inequality problems. Numerical Algorithms, 2018, 79, 597-610.	1.1	108
38	Modified Tseng's extragradient algorithms for variational inequality problems. Journal of Fixed Point Theory and Applications, 2018, 20, 1.	0.6	29
39	Tseng type methods for solving inclusion problems and its applications. Calcolo, 2018, 55, 1.	0.6	52
40	New extragradient methods for solving variational inequality problems and fixed point problems. Journal of Fixed Point Theory and Applications, 2018, 20, 1.	0.6	25
41	An inertial method for solving split common fixed point problems. Journal of Fixed Point Theory and Applications, 2017, 19, 3029-3051.	0.6	40
42	Viscosity approximation methods for solving fixed-point problems and split common fixed-point problems. Journal of Fixed Point Theory and Applications, 2017, 19, 1481-1499.	0.6	30
43	An implicit iteration process for nonexpansive semigroups. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 6116-6120.	0.6	11