Akari Hayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8020435/publications.pdf

Version: 2024-02-01

1478505 888059 44 299 17 6 citations h-index g-index papers 44 44 44 552 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Accelerated Durability Testing of Fuel Cell Stacks for Commercial Automotive Applications: A Case Study. Journal of the Electrochemical Society, 2022, 169, 044523.	2.9	22
2	Siliconeâ€containing polymer blend electrolyte membranes for fuel cell applications. Journal of Applied Polymer Science, 2021, 138, 50328.	2.6	4
3	Mesoporous Carbon Fibers with Tunable Mesoporosity for Electrode Materials in Energy Devices. Molecules, 2021, 26, 724.	3.8	3
4	Preparation of Model SOFCs with Proton-Conducting Electrolyte on Metal Support Using Pulse Laser Deposition. ECS Meeting Abstracts, 2021, MA2021-03, 257-257.	0.0	0
5	Preparation of Model SOFCs with Proton-Conducting Electrolyte on Metal Support Using Pulse Laser Deposition. ECS Transactions, 2021, 103, 2033-2040.	0.5	2
6	PEFCs Using Metallic Ti and Sn Gas Diffusion Layers. ECS Transactions, 2021, 104, 359-369.	0.5	0
7	PEFCs Using Metallic Ti and Sn Electrocatalyst Supports. ECS Transactions, 2021, 104, 389-399.	0.5	O
8	Preparation of PEFC Electrocatalysts Using SnO2 Thin Layer Support. ECS Transactions, 2021, 104, 347-357.	0.5	0
9	Investigating the Effect of Iridium Based Water Electrolysis Catalysts on the Performance and Durability of the Catalyst Layer in PEMFCs. ECS Meeting Abstracts, 2021, MA2021-02, 1178-1178.	0.0	O
10	PEFCs Using Metallic Ti and Sn Gas Diffusion Layers. ECS Meeting Abstracts, 2021, MA2021-02, 1161-1161.	0.0	0
11	PEFCs Using Metallic Ti and Sn Electrocatalyst Supports. ECS Meeting Abstracts, 2021, MA2021-02, 1180-1180.	0.0	O
12	Preparation of PEFC Electrocatalysts Using SnO2 Thin Layer Support. ECS Meeting Abstracts, 2021, MA2021-02, 1160-1160.	0.0	0
13	Development of Porous Pt Electrocatalysts for Oxygen Reduction and Evolution Reactions. Molecules, 2020, 25, 2398.	3.8	4
14	Hydrogenation Properties in Ti-Mn-V Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2020, 84, 99-108.	0.4	4
15	Pt-TiO2 Nanocomposite PEFC Electrocatalysts for High Potential Cycle Durability. ECS Transactions, 2020, 98, 523-533.	0.5	1
16	Catalyst-Integrated Gas Diffusion Electrodes for Polymer Electrolyte Membrane Water Electrolysis: Porous Titanium Sheets with Nanostructured TiO ₂ Surfaces Decorated with Ir Electrocatalysts. Journal of the Electrochemical Society, 2020, 167, 124523.	2.9	10
17	Porous Metal Support for Gas Diffusion Electrode of PEFCs. ECS Transactions, 2020, 98, 573-582.	0.5	0
18	Durability Analysis on PEM Water Electrolyzers against the Voltage Fluctuation of Wind Power. ECS Transactions, 2020, 98, 687-698.	0.5	3

#	Article	IF	CITATIONS
19	Nanostructuring Pt Electrocatalysts Supported on Nanocrystalline SnO2 for Polymer Electrolyte Fuel Cells. ECS Transactions, 2020, 98, 517-522.	0.5	O
20	Hydrogen Storage on Nanoporous Carbon Foam for Electrochemical Applications. ECS Meeting Abstracts, 2020, MA2020-02, 1123-1123.	0.0	0
21	Alternative Me-N-C Based Carbon Foams As Fe-Free and Non-PGM Electrocatalysts. ECS Meeting Abstracts, 2020, MA2020-02, 2279-2279.	0.0	O
22	Preparation of Model SOFCs with Proton-Conducting Electrolyte on Metal Support Using Pulse Laser Deposition. ECS Meeting Abstracts, 2020, MA2020-02, 2612-2612.	0.0	0
23	Pt-TiO2 Nanocomposite PEFC Electrocatalysts for High Potential Cycle Durability. ECS Meeting Abstracts, 2020, MA2020-02, 2334-2334.	0.0	0
24	In-Situ High-Temperature X-Ray Absorption Spectroscopy of Fe-N-C Electrocatalysts during Pyrolysis. ECS Meeting Abstracts, 2020, MA2020-02, 2277-2277.	0.0	0
25	Durability Analysis on PEM Water Electrolyzers against the Voltage Fluctuation of Wind Power. ECS Meeting Abstracts, 2020, MA2020-02, 2427-2427.	0.0	0
26	Porous Metal Support for Gas Diffusion Electrode of PEFCs. ECS Meeting Abstracts, 2020, MA2020-02, 2298-2298.	0.0	0
27	Elucidating the Formation Mechanisms of Fe-N-C Electrocatalysts Using High-Temperature in Situ Characterisation Techniques. ECS Meeting Abstracts, 2020, MA2020-02, 2290-2290.	0.0	0
28	Direct Measurement of Proton Conductivity in the Catalyst Layer of PEFC. ECS Meeting Abstracts, 2020, MA2020-02, 2221-2221.	0.0	0
29	Nanostructuring Pt Electrocatalysts Supported on Nanocrystalline SnO2 for Polymer Electrolyte Fuel Cells. ECS Meeting Abstracts, 2020, MA2020-02, 2333-2333.	0.0	0
30	Effect of Silicone-Containing Charge-Transfer Polymer Blend Membrane for PEFC Application. ECS Meeting Abstracts, 2020, MA2020-02, 2263-2263.	0.0	0
31	Designing the Cathode in MEA Using Mesoporous Carbon Fibers. ECS Meeting Abstracts, 2020, MA2020-02, 2327-2327.	0.0	0
32	GDL-Integrated Electrodes with Ir-Based Electrocatalysts for Polymer Electrolyte Membrane Water Electrolysis. ECS Transactions, 2019, 92, 833-843.	0.5	4
33	MPL/GDL-Supported Pt Electrocatalysts for PEFCs. ECS Transactions, 2019, 92, 507-513.	0.5	1
34	Development and Evaluation of Ir Based Anode Electrocatalysts for Water Electrolysis. ECS Transactions, 2018, 86, 719-726.	0.5	3
35	Metal-Oxide-Supported Ir-Decorated Electrocatalysts for Polymer Electrolyte Membrane Water Electrolysis. ECS Transactions, 2018, 86, 673-682.	0.5	6
36	Pt-Decorated Oxide/MPL/GDL-Supported PEFCs. ECS Transactions, 2018, 86, 461-468.	0.5	2

3

#	Article	IF	CITATIONS
37	Carbon-Free All-in-One Electrode Using Porous Ti Sheet for PEFCs. ECS Transactions, 2018, 86, 541-547.	0.5	5
38	High-performance bioelectrocatalysts created by immobilization of an enzyme into carbon-coated composite membranes with nano-tailored structures. Journal of Materials Chemistry A, 2017, 5, 20244-20251.	10.3	15
39	Ti-Porous-Sheet-Supported Pt Electrocatalysts for PEFCs. ECS Transactions, 2017, 80, 781-787.	0.5	4
40	Encapsulating Mobile Proton Carriers into Structural Defects in Coordination Polymer Crystals: High Anhydrous Proton Conduction and Fuel Cell Application. Journal of the American Chemical Society, 2016, 138, 8505-8511.	13.7	146
41	Nanostructure Control of Porous Carbon Materials through Changing Acidity with a Soft-template Method. Chemistry Letters, 2015, 44, 503-505.	1.3	1
42	Electrochemical enzymatic biosensor with long-term stability using hybrid mesoporous membrane. Analyst, The, 2014, 139, 4654-4660.	3.5	25
43	Characterization of MEAs Fabricated by a Carbon Support with the Nano-Channel Structure. ECS Transactions, 2013, 58, 1105-1111.	0.5	4
44	Production of l-theanine using glutaminase encapsulated in carbon-coated mesoporous silica with high pH stability. Biochemical Engineering Journal, 2012, 68, 207-214.	3.6	30