Dianwu Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8020362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Materials, 2020, 24, 208-219.	9.5	140
2	Boosting the Potassium-Ion Storage Performance in Soft Carbon Anodes by the Synergistic Effect of Optimized Molten Salt Medium and N/S Dual-Doping. ACS Applied Materials & Interfaces, 2020, 12, 20838-20848.	4.0	88
3	Thermal stability and elastic properties of Mg2X (X = Si, Ge, Sn, Pb) phases from first-principle calculations. Computational Materials Science, 2012, 51, 409-414.	1.4	86
4	Effects of amino silicone oil modification on properties of ramie fiber and ramie fiber/polypropylene composites. Materials & Design, 2015, 77, 142-148.	5.1	50
5	First-principles calculation of dehydrogenating properties of MgH2-V systems. Science in China Series D: Earth Sciences, 2006, 49, 129-136.	0.9	42
6	First-principles investigation of the binary intermetallics in Mg–Al–Sr alloy: Stability, elastic properties and electronic structure. Computational Materials Science, 2014, 86, 24-29.	1.4	36
7	Improving the cycle stability of FeCl3-graphite intercalation compounds by polar Fe2O3 trapping in lithium-ion batteries. Nano Research, 2019, 12, 1836-1844.	5.8	35
8	Investigation on the microscopic mechanism of potassium permanganate modification and the properties of ramie fiber/polypropylene composites. Polymer Composites, 2018, 39, 3353-3362.	2.3	20
9	FeCl ₃ Intercalated Microcrystalline Graphite Enables High Volumetric Capacity and Good Cycle Stability for Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1801091.	1.8	20
10	Synergetic Effects toward Catalysis and Confinement of Magnesium Hydride on Modified Graphene: A First-Principles Study. Journal of Physical Chemistry C, 2017, 121, 18401-18411.	1.5	13
11	Effect of Ti foil on microstructure and mechanical properties of laser fusion welding of DP590 dual-phase steel to 6022 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 796, 139929.	2.6	13
12	Study on hydrogen atom adsorption and diffusion properties on Mg (0001) surface. Science in China Series D: Earth Sciences, 2009, 52, 1897-1905.	0.9	12
13	Periodic root humps in thick-plate laser welding using steady electromagnetic force. Journal of Materials Processing Technology, 2019, 273, 116247.	3.1	12
14	Laser lap welding quality of steel/aluminum dissimilar metal joint and its electronic simulations. International Journal of Advanced Manufacturing Technology, 2016, 86, 2231-2242.	1.5	11
15	Improvement of laser welded joint properties of AZ31B magnesium alloy to DP590 dual-phase steel produced by external magnetic field. Journal of Manufacturing Processes, 2022, 79, 270-283.	2.8	11
16	FIRSTPRINCIPLES CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF <i>AB</i> ₂ TYPE INTERMETALLICS IN ZA62 MAGNESIUM ALLOY. Jinshu Xuebao/Acta Metallurgica Sinica, 2010, 2010, 97-103.	0.3	10
17	Microstructure, mechanical properties, and electronic simulations of steel/aluminum alloy joint during deep penetration laser welding. International Journal of Advanced Manufacturing Technology, 2017, 89, 377-387.	1.5	9
18	Microscopic mechanism of amino silicone oil modification and modification effect with different amino group contents based on molecular dynamics simulation. Applied Surface Science, 2018, 440, 331-340.	3.1	9

DIANWU ZHOU

#	Article	IF	CITATIONS
19	Numerical and experimental investigation of magnesium/aluminum laser welding with magnetic field. International Journal of Advanced Manufacturing Technology, 2021, 116, 545-559.	1.5	9
20	Microstructure and mechanical properties of laser welding of AZ31B magnesium alloy and DP590 dual-phase steel with concave groove joint. Journal of Manufacturing Processes, 2021, 72, 227-239.	2.8	9
21	Effect of laser-Ti foil coupling on microstructure and mechanical property of steel/aluminum fusion welding joints. Optics and Laser Technology, 2021, 141, 107114.	2.2	8
22	Effect of beam oscillation on intermetallic compounds and mechanical properties of steel/aluminum laser welded joint. Journal of Manufacturing Processes, 2022, 73, 40-53.	2.8	8
23	Influence of laser-Sn powder coupling on microstructure and mechanical properties of fusion welded AZ31B-alloy to DP590-steel. Optics and Laser Technology, 2022, 152, 108091.	2.2	7
24	MICROSTRUCTURE AND MECHANICAL PROPERTYOF STEEL/A1 ALLOY LASER WELDING WITH SnPOWDER ADDITION. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 959.	0.3	5
25	Analysis of the Adhesive Layer of Laser Weld Bonding Joints in Dual Phase Steel/ Aluminum Alloy. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2016, 52, 25.	0.7	5
26	Hybrid joining mechanism of rivet plug oscillating laser welding for dual-phase steel and magnesium alloy. Journal of Manufacturing Processes, 2022, 77, 652-664.	2.8	5
27	Effects of Sn-foil addition on the microstructure and mechanical properties of laser welding joint for dual phase steel and magnesium alloy. SN Applied Sciences, 2019, 1, 1.	1.5	4
28	Microstructure and Mechanical Properties of Deep Penetration Laser Welding Joints in Steel/Aluminum with Si Powder Addition. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2018, 54, 58.	0.7	4
29	Study on H atoms diffusion and adsorption properties of MgH2-V systems. Science in China Series D: Earth Sciences, 2008, 51, 979-988.	0.9	3
30	Research on laser weld bonding of duel phase steel to aluminium alloy. International Journal of Manufacturing Research, 2016, 11, 209.	0.1	2
31	Microstructure and Mechanical Properties of Adding Adhesive-Layer Laser-Welded Joints of DP590 Dual-Phase Steel and 6061 Aluminum Alloy. Transactions of the Indian Institute of Metals, 2019, 72, 3295-3304.	0.7	2
32	First-Principles Calculation on Dehydrogenating Properties of LiBH4-X(Xï¼O,F,Cl)Systems. Acta Chimica Sinica, 2012, 70, 71.	0.5	2
33	Effect of Pre-straining and Subsequent Annealing on Microstructure and Mechanical Property of Zr–Sn–Nb–Fe Zirconium Alloy. Metals and Materials International, 0, , 1.	1.8	1
34	Stacking fault energy and ductility in a new zirconium alloys: A combined experimental and first-principles study. Computational Materials Science, 2022, 202, 110974.	1.4	1