Li Gou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8020303/publications.pdf

Version: 2024-02-01

713013 840119 35 483 11 21 citations h-index g-index papers 36 36 36 580 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Dual-Functional Supernanoparticles with Microwave Dynamic Therapy and Microwave Thermal Therapy. Nano Letters, 2019, 19, 5277-5286.	4.5	107
2	High performance asymmetric supercapacitor based on hierarchical flower-like NiCo2S4@polyaniline. Applied Surface Science, 2019, 487, 68-76.	3.1	63
3	Multifunctional and flexible ZrO ₂ -coated EGaIn nanoparticles for photothermal therapy. Nanoscale, 2019, 11, 10183-10189.	2.8	61
4	SiC film deposition by DC magnetron sputtering. Thin Solid Films, 1999, 345, 42-44.	0.8	27
5	Photothermal photodynamic therapy and enhanced radiotherapy of targeting copolymer-coated liquid metal nanoparticles on liver cancer. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112023.	2.5	21
6	Enhancement in performance of negative electrode of supercapacitor based on nitrogen doped porous carbon spheres. Journal of Alloys and Compounds, 2019, 786, 91-97.	2.8	20
7	Recent progress in Van der Waals 2D PtSe ₂ . Nanotechnology, 2021, 32, 412001.	1.3	20
8	Investigations on etching resistance of undoped and boron doped polycrystalline diamond films by oxygen plasma etching. Vacuum, 2016, 128, 80-84.	1.6	19
9	Improvement in surface hydrophilicity and resistance to deformation of natural leather through O 2 /H 2 O low-temperature plasma treatment. Applied Surface Science, 2016, 360, 398-402.	3.1	18
10	A Novel Wearable Flexible Dry Electrode Based on Cowhide for ECG Measurement. Biosensors, 2021, 11, 101.	2.3	18
11	Design and synthesis of 3D hierarchical NiMoS ₄ @CuCo ₂ S ₄ array electrode with excellent electrochemical performance. Nanotechnology, 2020, 31, 185602.	1.3	16
12	A core–shell liquid metal-Cu nanoparticle with glutathione consumption⟨i⟩via⟨ i⟩an⟨i⟩in situ⟨ i⟩replacement strategy for tumor combination treatment of chemodynamic, microwave dynamic and microwave thermal therapy. Biomaterials Science, 2022, 10, 3503-3513.	2.6	12
13	Stress control of heterogeneous nanocrystalline diamond sphere through pressure-temperature tuning. Applied Physics Letters, 2017, 110, .	1.5	11
14	Improvement in electrical conductivity of boron-doped diamond films after hydrogen plasma and vacuum heat treatment. Applied Surface Science, 2020, 526, 146738.	3.1	10
15	Comparative analysis of graphene grown on copper and nickel sheet by microwave plasma chemical vapor deposition. Vacuum, 2018, 153, 48-52.	1.6	9
16	The process of immobilizing enzyme of glucose sensor based on diamond film. Supramolecular Science, 1998, 5, 699-700.	0.7	8
17	Thermoelectric properties of the lanthanum-doped Ca ₃ Co ₄ O ₉ prepared by a modified parallel flow co-precipitation method. Advances in Applied Ceramics, 2021, 120, 95-103.	0.6	6
18	Mechanical Properties and Uniformity of Nanocrystalline Diamond Coating Deposited Around a Sphere by MPCVD. Plasma Science and Technology, 2015, 17, 1038-1042.	0.7	5

#	Article	IF	Citations
19	Microstructure and optical properties of Nd: YAG transparent ceramics with the addition of Lu ³⁺ ions. Advances in Applied Ceramics, 2016, 115, 417-421.	0.6	5
20	Enhancement in conductivity of boron doped diamond films deposited by the methanol/acetone/B2O3 system. Vacuum, 2018, 157, 61-64.	1.6	5
21	Investigation of the process of diamond formation from SiC under high pressure and high temperature. Journal of Materials Science, 1995, 30, 5687-5690.	1.7	4
22	Evolution of surface morphology and optical transmittance of single crystal diamond film by epitaxial growth. AIP Advances, 2019, 9, 095048.	0.6	4
23	Impact resistance performance of diamond film on a curved molybdenum substrate. Philosophical Magazine Letters, 2017, 97, 304-310.	0.5	3
24	Preparation and properties of covalent organic framework nanoparticles with high drug loading. Frontiers of Materials Science, 2021, 15, 465-470.	1.1	3
25	Effect of surface charges of nanoparticles on response current of enzyme electrode for single use. Sensors and Actuators B: Chemical, 2008, 133, 565-570.	4.0	2
26	Title is missing!. Journal of Materials Science Letters, 2003, 22, 257-259.	0.5	1
27	Improvement in the Sensitivity of the Response of Diamond Thin Films to X-Ray. Key Engineering Materials, 2007, 336-338, 1718-1721.	0.4	1
28	Response of radiation dosimeters based on in situ oxygen plasma post-treated CVD-diamond thin films to X-ray. Journal of Materials Science, 2010, 45, 2780-2787.	1.7	1
29	Characterization and electrochemical behavior of spherical boron-doped diamond film electrode. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 052903.	0.6	1
30	Improvement in the transmittance of Lu $<$ sup $>3+sup> ion doped Nd: YAG ceramics. Materials Research Express, 2019, 6, 0950a3.$	0.8	1
31	Performance of a flexible electrode based on natural leather. Journal of Materials Science: Materials in Electronics, 2021, 32, 4891-4902.	1.1	1
32	Cytotoxicity of Boron-Doped Nanocrystalline Diamond Films Prepared by Microwave Plasma Chemical Vapor Deposition. Plasma Science and Technology, 2015, 17, 574-578.	0.7	0
33	Investigation the Structure and Property of Two-dimensional Materials Using Scanning Probe Techniques. , 2019, , .		0
34	Mechanical behavior of BDD films after different heat treatments. Surface and Coatings Technology, 2021, 427, 127780.	2.2	0
35	High Biocompatible Poly(lactic-co-glycolic acid)-Based Nanosensitizer With Magnetic Resonance Imaging Capacity for Tumor Targeted Microwave Hyperthermia and Chemotherapy. Journal of Biomedical Nanotechnology, 2022, 18, 369-380.	0.5	O