
## Linda M Wakim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8020297/publications.pdf Version: 2024-02-01



LINDA M WARIM

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tissue resident memory T cells in the respiratory tract. Mucosal Immunology, 2022, 15, 379-388.                                                                                                                                       | 6.0  | 72        |
| 2  | SARS-CoV-2 infection results in immune responses in the respiratory tract and peripheral blood that suggest mechanisms of disease severity. Nature Communications, 2022, 13, 2774.                                                    | 12.8 | 21        |
| 3  | Mouse Mx1 Inhibits Herpes Simplex Virus Type 1 Genomic Replication and Late Gene Expression <i>In<br/>Vitro</i> and Prevents Lesion Formation in the Mouse Zosteriform Model. Journal of Virology, 2022,<br>96, .                     | 3.4  | 6         |
| 4  | Influenza, but not SARSâ€CoVâ€2, infection induces a rapid interferon response that wanes with age and<br>diminished tissueâ€resident memory CD8 <sup>+</sup> T cells. Clinical and Translational Immunology,<br>2021, 10, e1242.     | 3.8  | 25        |
| 5  | CD8+ T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph. Nature Communications, 2021, 12, 2931.                                                              | 12.8 | 20        |
| 6  | CD8+ TÂcells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity. Immunity, 2021, 54, 1066-1082.e5.                                                             | 14.3 | 106       |
| 7  | IFITM3 and type I interferons are important for the control of influenza A virus replication in murine macrophages. Virology, 2020, 540, 17-22.                                                                                       | 2.4  | 17        |
| 8  | Intranasal Delivery of a Chitosan-Hydrogel Vaccine Generates Nasal Tissue Resident Memory CD8+ T<br>Cells That Are Protective against Influenza Virus Infection. Vaccines, 2020, 8, 572.                                              | 4.4  | 21        |
| 9  | Unresponsiveness to inhaled antigen is governed by conventional dendritic cells and overridden during infection by monocytes. Science Immunology, 2020, 5, .                                                                          | 11.9 | 12        |
| 10 | Suboptimal SARS-CoV-2â^'specific CD8 <sup>+</sup> T cell response associated with the prominent<br>HLA-A*02:01 phenotype. Proceedings of the National Academy of Sciences of the United States of<br>America, 2020, 117, 24384-24391. | 7.1  | 168       |
| 11 | Neutrophils play an ongoing role in preventing bacterial pneumonia by blocking the dissemination of<br><i>Staphylococcus aureus</i> from the upper to the lower airways. Immunology and Cell Biology,<br>2020, 98, 577-594.           | 2.3  | 9         |
| 12 | Airway Exosomes Released During Influenza Virus Infection Serve as a Key Component of the Antiviral<br>Innate Immune Response. Frontiers in Immunology, 2020, 11, 887.                                                                | 4.8  | 33        |
| 13 | RNF41 regulates the damage recognition receptor Clec9A and antigen cross-presentation in mouse dendritic cells. ELife, 2020, 9, .                                                                                                     | 6.0  | 16        |
| 14 | Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza<br>CTL responses. Nature Communications, 2019, 10, 2846.                                                                         | 12.8 | 70        |
| 15 | Zymosan by-passes the requirement for pulmonary antigen encounter in lung tissue-resident memory<br>CD8+ T cell development. Mucosal Immunology, 2019, 12, 403-412.                                                                   | 6.0  | 19        |
| 16 | Rapid interferon independent expression of IFITM3 following T cell activation protects cells from influenza virus infection. PLoS ONE, 2019, 14, e0210132.                                                                            | 2.5  | 28        |
| 17 | Human CD8+ T cell cross-reactivity across influenza A, B and C viruses. Nature Immunology, 2019, 20, 613-625.                                                                                                                         | 14.5 | 180       |
| 18 | Bystander Activation of Pulmonary Trm Cells Attenuates the Severity of Bacterial Pneumonia by<br>Enhancing Neutrophil Recruitment. Cell Reports, 2019, 29, 4236-4244.e3.                                                              | 6.4  | 44        |

Linda M Wakim

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Memory T Cell Dynamics in the Lung during Influenza Virus Infection. Journal of Immunology, 2019, 202, 374-381.                                                                                                                           | 0.8  | 43        |
| 20 | Circulating T <sub>FH</sub> cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity. Science Translational Medicine, 2018, 10, .                                                        | 12.4 | 196       |
| 21 | Single-Cell Approach to Influenza-Specific CD8+ T Cell Receptor Repertoires Across Different Age<br>Groups, Tissues, and Following Influenza Virus Infection. Frontiers in Immunology, 2018, 9, 1453.                                     | 4.8  | 63        |
| 22 | Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines, 2018,<br>6, 18.                                                                                                                          | 4.4  | 89        |
| 23 | Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. Journal of Clinical Investigation, 2018, 128, 721-733.                                                            | 8.2  | 147       |
| 24 | Nasal-associated lymphoid tissues (NALTs) support the recall but not priming of influenza<br>virus-specific cytotoxic T cells. Proceedings of the National Academy of Sciences of the United States<br>of America, 2017, 114, 5225-5230.  | 7.1  | 49        |
| 25 | Resident memory CD8 <sup>+</sup> T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Science Immunology, 2017, 2, .                                                                                       | 11.9 | 205       |
| 26 | When input does not match output, lungâ€resident memory T cells decay. Immunology and Cell Biology,<br>2017, 95, 321-322.                                                                                                                 | 2.3  | 1         |
| 27 | Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity, 2017, 47, 135-147.e5.                                                           | 14.3 | 133       |
| 28 | Endogenous Murine BST-2/Tetherin Is Not a Major Restriction Factor of Influenza A Virus Infection.<br>PLoS ONE, 2015, 10, e0142925.                                                                                                       | 2.5  | 12        |
| 29 | Respiratory DC Use IFITM3 to Avoid Direct Viral Infection and Safeguard Virus-Specific CD8+ T Cell<br>Priming. PLoS ONE, 2015, 10, e0143539.                                                                                              | 2.5  | 34        |
| 30 | Enhanced survival of lung tissue-resident memory CD8+ T cells during infection with influenza virus due to selective expression of IFITM3. Nature Immunology, 2013, 14, 238-245.                                                          | 14.5 | 186       |
| 31 | The Molecular Signature of Tissue Resident Memory CD8 T Cells Isolated from the Brain. Journal of Immunology, 2012, 189, 3462-3471.                                                                                                       | 0.8  | 310       |
| 32 | Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature, 2011, 471, 629-632.                                                                                                                      | 27.8 | 256       |
| 33 | From the thymus to longevity in the periphery. Current Opinion in Immunology, 2010, 22, 274-278.                                                                                                                                          | 5.5  | 26        |
| 34 | Memory T cells persisting within the brain after local infection show functional adaptations to their<br>tissue of residence. Proceedings of the National Academy of Sciences of the United States of America,<br>2010, 107, 17872-17879. | 7.1  | 473       |
| 35 | Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nature Immunology, 2009, 10, 524-530.                                                                               | 14.5 | 946       |
| 36 | Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nature<br>Immunology, 2009, 10, 488-495.                                                                                                            | 14.5 | 612       |

LINDA M WAKIM

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | CD8 + Tâ€cell attenuation of cutaneous herpes simplex virus infection reduces the average viral copy number of the ensuing latent infection. Immunology and Cell Biology, 2008, 86, 666-675. | 2.3  | 41        |
| 38 | Dendritic Cell-Induced Memory T Cell Activation in Nonlymphoid Tissues. Science, 2008, 319, 198-202.                                                                                         | 12.6 | 398       |
| 39 | Cutting Edge: Local Recall Responses by Memory T Cells Newly Recruited to Peripheral Nonlymphoid<br>Tissues. Journal of Immunology, 2008, 181, 5837-5841.                                    | 0.8  | 55        |
| 40 | The interplay between dendritic cell subsets and T cells during peripheral virus infection. FASEB Journal, 2008, 22, 855.2.                                                                  | 0.5  | 0         |
| 41 | Staphylococcus aureus specific lung resident memory CD4+ Th1 cells attenuate the severity of influenza virus induced secondary bacterial pneumonia. Mucosal Immunology, 0, , .               | 6.0  | 6         |