
Yuankun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8020017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Streamflow and rainfall forecasting by two long short-term memory-based models. Journal of Hydrology, 2020, 583, 124296.	2.3	158
2	Assessment of the flow regime alterations in the middle reach of the Yangtze River associated with dam construction: potential ecological implications. Hydrological Processes, 2016, 30, 3949-3966.	1.1	138
3	Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model. Journal of Hydrology, 2020, 586, 124901.	2.3	108
4	A cloud model-based approach for water quality assessment. Environmental Research, 2016, 148, 24-35.	3.7	97
5	Investigating the impacts of cascade hydropower development on the natural flow regime in the Yangtze River, China. Science of the Total Environment, 2018, 624, 1187-1194.	3.9	76
6	Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River. Journal of Hydrology, 2018, 558, 184-195.	2.3	74
7	A multidimension cloud model-based approach for water quality assessment. Environmental Research, 2016, 149, 113-121.	3.7	63
8	A framework to assess the cumulative impacts of dams on hydrological regime: A case study of the Yangtze River. Hydrological Processes, 2017, 31, 3045-3055.	1.1	60
9	Assessing the impact of Danjiangkou reservoir on ecohydrological conditions in Hanjiang river, China. Ecological Engineering, 2015, 81, 41-52.	1.6	57
10	Water temperature forecasting based on modified artificial neural network methods: Two cases of the Total Environment, 2020, 737, 139729.	3.9	57
11	Impacts of cascade reservoirs on Yangtze River water temperature: Assessment and ecological implications. Journal of Hydrology, 2020, 590, 125240.	2.3	53
12	River water temperature forecasting using a deep learning method. Journal of Hydrology, 2021, 595, 126016.	2.3	49
13	Ecological and health risk assessment of PAHs, OCPs, and PCBs in Taihu Lake basin. Ecological Indicators, 2018, 92, 171-180.	2.6	48
14	Quantifying the impacts of the Three Gorges Reservoir on water temperature in the middle reach of the Yangtze River. Journal of Hydrology, 2020, 582, 124476.	2.3	48
15	Non-stationary frequency analysis of annual extreme rainfall volume and intensity using Archimedean copulas: A case study in eastern China. Journal of Hydrology, 2019, 571, 114-131.	2.3	45
16	Variable Fuzzy Set Theory to Assess Water Quality of the Meiliang Bay in Taihu Lake Basin. Water Resources Management, 2014, 28, 867-880.	1.9	37
17	A risk assessment method based on RBF artificial neural network - cloud model for urban water hazard. Journal of Intelligent and Fuzzy Systems, 2014, 27, 2409-2416.	0.8	32
18	A hybrid wavelet de-noising and Rank-Set Pair Analysis approach for forecasting hydro-meteorological time series. Environmental Research, 2018, 160, 269-281.	3.7	32

YUANKUN WANG

#	Article	IF	CITATIONS
19	Assessing spawning ground hydraulic suitability for Chinese sturgeon (Acipenser sinensis) from horizontal mean vorticity in Yangtze River. Ecological Modelling, 2009, 220, 1443-1448.	1.2	31
20	Vine copula selection using mutual information for hydrological dependence modeling. Environmental Research, 2020, 186, 109604.	3.7	31
21	A kriging and entropy-based approach to raingauge network design. Environmental Research, 2018, 161, 61-75.	3.7	30
22	Mid- and long-term runoff predictions by an improved phase-space reconstruction model. Environmental Research, 2016, 148, 560-573.	3.7	27
23	A new method for wind speed forecasting based on copula theory. Environmental Research, 2018, 160, 365-371.	3.7	26
24	Quantifying the change in streamflow complexity in the Yangtze River. Environmental Research, 2020, 180, 108833.	3.7	25
25	Optimization of rainfall networks using information entropy and temporal variability analysis. Journal of Hydrology, 2018, 559, 136-155.	2.3	24
26	A transitional region concept for assessing the effects of reservoirs on river habitats: a case of Yangtze River, China. Ecohydrology, 2012, 5, 28-35.	1.1	23
27	A two-phase copula entropy-based multiobjective optimization approach to hydrometeorological gauge network design. Journal of Hydrology, 2017, 555, 228-241.	2.3	20
28	Assessing the effect of Separation Levee Project on Chinese sturgeon (Acipensor sinensis) spawning habitat suitability in Yangtze River, China. Aquatic Ecology, 2011, 45, 255-266.	0.7	17
29	Characterization of hydraulic suitability of Chinese sturgeon (<i>Acipenser sinensis</i>) spawning habitat in the Yangtze River. Hydrological Processes, 2012, 26, 3489-3498.	1.1	16
30	A C-vine copula framework to predict daily water temperature in the Yangtze River. Journal of Hydrology, 2021, 598, 126430.	2.3	16
31	Impact of the Three Gorges and Gezhouba Reservoirs on Ecohydrological Conditions for Sturgeon in the Yangtze River, China. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1563-1570.	0.8	15
32	A hybrid wavelet analysis–cloud model dataâ€extending approach for meteorologic and hydrologic time series. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4057-4071.	1.2	15
33	Assessing the Interactions between Chlorophyll <i>a</i> and Environmental Variables Using Copula Method. Journal of Hydrologic Engineering - ASCE, 2012, 17, 495-506.	0.8	14
34	Entropy of hydrological systems under small samples: Uncertainty and variability. Journal of Hydrology, 2016, 532, 163-176.	2.3	14
35	A time-varying drought identification and frequency analyzation method: A case study of Jinsha River Basin. Journal of Hydrology, 2021, 603, 126864.	2.3	14
36	Optimal moment determination in POME-copula based hydrometeorological dependence modelling. Advances in Water Resources, 2017, 105, 39-50.	1.7	13

YUANKUN WANG

#	Article	IF	CITATIONS
37	A Variable Fuzzy Set Assessment Model for Water Shortage Risk: Two Case Studies from China. Human and Ecological Risk Assessment (HERA), 2011, 17, 631-645.	1.7	12
38	Non-Carcinogenic Baseline Risk Assessment of Heavy Metals in the Taihu Lake Basin, China. Human and Ecological Risk Assessment (HERA), 2011, 17, 212-218.	1.7	12
39	A probabilistic modeling framework for assessing the impacts of large reservoirs on river thermal regimes – A case of the Yangtze River. Environmental Research, 2020, 183, 109221.	3.7	12
40	Water Regime Evolution of Large Seasonal Lakes: Indicators for Characterization and an Application in Poyang Lake, China. International Journal of Environmental Research and Public Health, 2018, 15, 2598.	1.2	11
41	Time-varying copula and average annual reliability-based nonstationary hazard assessment of extreme rainfall events. Journal of Hydrology, 2021, 603, 126792.	2.3	11
42	Investigation into Multi-Temporal Scale Complexity of Streamflows and Water Levels in the Poyang Lake Basin, China. Entropy, 2017, 19, 67.	1.1	10
43	Developing an entropy and copula-based approach for precipitation monitoring network expansion. Journal of Hydrology, 2021, 598, 126366.	2.3	10
44	Evaluation of information transfer and data transfer models of rain-gauge network design based on information entropy. Environmental Research, 2019, 178, 108686.	3.7	9
45	A hybrid model-based framework for estimating ecological risk. Journal of Cleaner Production, 2019, 225, 1230-1240.	4.6	9
46	Information theory-based multi-objective design of rainfall network for streamflow simulation. Advances in Water Resources, 2020, 135, 103476.	1.7	9
47	A hybrid statistical model for ecological risk integral assessment of PAHs in sediments. Journal of Hydrology, 2020, 583, 124612.	2.3	9
48	Impacts of Streamflow and Topographic Changes on Water Level during the Dry Season of Poyang Lake, China. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	0.8	8
49	Copula-based seasonal rainfall simulation considering nonstationarity. Journal of Hydrology, 2020, 590, 125439.	2.3	8
50	Multivariate Hazard Assessment for Nonstationary Seasonal Flood Extremes Considering Climate Change. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032780.	1.2	8
51	A framework for assessing river thermal regime alteration: A case study of the Hanjiang River. Journal of Hydrology, 2022, 610, 127798.	2.3	7
52	A timeâ€series model for assessing instantaneous physical conditions in carp habitats. Ecohydrology, 2013, 6, 393-401.	1.1	6
53	Improved comprehensive ecological risk assessment method and sensitivity analysis of polycyclic aromatic hydrocarbons (PAHs). Environmental Research, 2020, 187, 109500.	3.7	6
54	Developing a dual entropy-transinformation criterion for hydrometric network optimization based on information theory and copulas. Environmental Research, 2020, 180, 108813.	3.7	5

YUANKUN WANG

#	Article	IF	CITATIONS
55	A novel method for calculating distributed water depth and flow velocity of stormwater runoff during the heavy rainfall events. Journal of Hydrology, 2022, 612, 128064.	2.3	5
56	A Stepwise and Dynamic C-Vine Copula–Based Approach for Nonstationary Monthly Streamflow Forecasts. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	0.8	4
57	Risk Assessment for a Flood Control Engineering System Using Fuzzy Theory: A Case in China. Human and Ecological Risk Assessment (HERA), 2013, 19, 400-409.	1.7	3
58	Effect of Uncertainty in Historical Data on Flood Frequency Analysis Using Bayesian Method. Journal of Hydrologic Engineering - ASCE, 2021, 26, 04021011.	0.8	3
59	WD-RBF Model and its Application of Hydrologic Time Series Prediction. Journal of Risk Analysis and Crisis Response (JRACR), 2013, 3, 185.	0.1	1
60	Eutrophication Hazard Evaluation Using Copula-Cloud. Journal of Risk Analysis and Crisis Response (JRACR), 2016, 6, 10.	0.1	1
61	Quantitative Assessment of Climatic and Reservoir-Induced Effects on River Water Temperature Using Bayesian Network-Based Approach. Water (Switzerland), 2022, 14, 1200.	1.2	1
62	Entropy Based Multicriterion Evaluation for Rainfall Monitoring Networks under the Impact of Discretization. , 0, , .		0