
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8019853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corrosion Science, 2010, 52, 602-611.	3.0	456
2	Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy. Corrosion Science, 2005, 47, 3368-3383.	3.0	324
3	Enhancement of Active Corrosion Protection via Combination of Inhibitor-Loaded Nanocontainers. ACS Applied Materials & Interfaces, 2010, 2, 1528-1535.	4.0	302
4	Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability. Progress in Organic Coatings, 2007, 58, 127-135.	1.9	280
5	Novel Inorganic Host Layered Double Hydroxides Intercalated with Guest Organic Inhibitors for Anticorrosion Applications. ACS Applied Materials & amp; Interfaces, 2009, 1, 2353-2362.	4.0	277
6	Quantum Dot Chemiluminescence. Nano Letters, 2004, 4, 693-698.	4.5	275
7	Size-Dependent Electrochemical Behavior of Thiol-Capped CdTe Nanocrystals in Aqueous Solution. Journal of Physical Chemistry B, 2005, 109, 1094-1100.	1.2	211
8	Structural, Optical, and Photoelectrochemical Properties of Nanocrystalline TiO2â^'In2O3Composite Solids and Films Prepared by Solâ^'Gel Method. Journal of Physical Chemistry B, 2001, 105, 4816-4823.	1.2	128
9	Electrodeposited Ni–B alloy coatings: Structure, corrosion resistance and mechanical properties. Electrochimica Acta, 2010, 55, 2223-2231.	2.6	123
10	TiO2-In2O3 photocatalysts: preparation, characterisations and activity for 2-chlorophenol degradation in water. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 423-430.	2.0	119
11	Photoelectrochemical properties of bismuth oxyhalide films. Electrochimica Acta, 1990, 35, 1941-1947.	2.6	81
12	Synthesis of surface-modified colloidal semiconductor nanocrystals and study of photoinduced charge separation and transport in nanocrystal-polymer composites. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 237-241.	1.3	79
13	Preparation and corrosion protective properties of nanostructured titania-containing hybrid sol–gel coatings on AA2024. Progress in Organic Coatings, 2008, 62, 226-235.	1.9	73
14	Semiconductor Nanocrystals Photosensitize C60Crystals. Nano Letters, 2006, 6, 1559-1563.	4.5	71
15	Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders. Surface Science, 2000, 454-456, 396-401.	0.8	55
16	Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes. Journal of Electroanalytical Chemistry, 1998, 442, 99-105.	1.9	54
17	Photoluminescence and electroluminescence at the TiO2—electrolyte interface. Journal of Electroanalytical Chemistry, 1992, 340, 73-97.	1.9	49
18	Photoinduced and dark underpotential deposition of lead on selenium. Journal of Electroanalytical Chemistry, 2002, 518, 103-114.	1.9	47

#	Article	IF	CITATIONS
19	Characterization and photoelectrochemical properties of nanocrystalline In2O3 film electrodes. Electrochimica Acta, 2000, 45, 1595-1605.	2.6	43
20	Structure and Electrochemical Properties of Species Formed as a Result of Cu(II) Ion Adsorption onto TiO2 Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 1308-1315.	1.2	41
21	Electrochemical oxidation of titanium by pulsed discharge in electrolyte. Journal of Electroanalytical Chemistry, 2005, 579, 299-310.	1.9	35
22	Electrochemical Observation of the Photoinduced Formation of Alloyed ZnSe(S) Nanocrystals. Journal of Physical Chemistry B, 2006, 110, 19233-19237.	1.2	30
23	Optical properties and charge transport in nanocrystalline TiO2–In2O3 composite films. Thin Solid Films, 2002, 405, 35-41.	0.8	29
24	Electrochemical probing of thiol-capped nanocrystals. Mikrochimica Acta, 2008, 160, 327-334.	2.5	26
25	Electroluminescent method for determining hydrogen peroxide and peroxydisulphate ions in aqueous solution using TiO film electrodes. Talanta, 1996, 43, 1607-1613.	2.9	23
26	Electroless gold plating from a hypophosphite-dicyanoaurate bath. Surface and Coatings Technology, 2004, 176, 327-336.	2.2	23
27	Light-Induced Proton Pumping with a Semiconductor: Vision for Photoproton Lateral Separation and Robust Manipulation. ACS Applied Materials & Interfaces, 2017, 9, 24282-24289.	4.0	22
28	Impedance behaviour of anodic TiO2 films prepared by galvanostatic anodisation and powerful pulsed discharge in electrolyte. Electrochimica Acta, 2012, 76, 453-461.	2.6	21
29	Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method. Thin Solid Films, 2015, 589, 145-152.	0.8	19
30	SERS Platforms of Plasmonic Hydrophobic Surfaces for Analyte Concentration: Hierarchically Assembled Gold Nanorods on Anodized Aluminum. Particle and Particle Systems Characterization, 2014, 31, 1134-1140.	1.2	18
31	Ultrasonically Produced Porous Sponge Layer on Titanium to Guide Cell Behavior. Advanced Engineering Materials, 2016, 18, 476-483.	1.6	18
32	Electrodeposited Ni–Co–B Alloy Coatings: Preparation and Properties. Journal of the Electrochemical Society, 2014, 161, D620-D627.	1.3	16
33	Electrocatalytic activity of Au nanoparticles onto TiO2 nanotubular layers in oxygen electroreduction reaction: size and support effects. Electrochimica Acta, 2016, 222, 1013-1020.	2.6	16
34	Strain Sensing Coatings for Large Composite Structures Based on 2D MXene Nanoparticles. Sensors, 2021, 21, 2378.	2.1	16
35	A study of the anticorrosion properties of carbonate deposits to protect low-carbon steel from the action of tap water. Russian Journal of Applied Chemistry, 2014, 87, 450-455.	0.1	15
36	The Structure and Properties of TiO2–Cu(II)–EDTA Ternary Surface Complexes. Journal of Colloid and Interface Science, 2001, 239, 200-208.	5.0	14

#	Article	IF	CITATIONS
37	Electrochemical preparation of lead-doped amorphous Se films and underpotential deposition of lead onto these films. Surface Science, 2003, 532-535, 1092-1097.	0.8	13
38	An electroluminescence optical sensor system based on TiO2 film electrodes for continuous measurement of H2O2 concentration in solution. Sensors and Actuators B: Chemical, 1994, 22, 97-100.	4.0	12
39	Gelatin-templated mesoporous titania for photocatalytic air treatment and application in metal chalcogenide nanoparticle-sensitized solar cells. Photochemical and Photobiological Sciences, 2013, 12, 621-625.	1.6	12
40	Photoelectrochemical and Raman characterization of nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method. Thin Solid Films, 2014, 562, 56-62.	0.8	12
41	Photocurrent Generation and Optical Transitions on Degenerate Cadmium Oxide Photoanodes. Physica Status Solidi A, 1989, 111, 193-199.	1.7	11
42	Photoelectrochemical and Raman characterization of In ₂ O ₃ mesoporous films sensitized by CdS nanoparticles. Beilstein Journal of Nanotechnology, 2013, 4, 255-261.	1.5	11
43	Sol-gel template synthesis of mesoporous carbon-doped TiO2 with photocatalytic activity under visible light. Materials Today: Proceedings, 2018, 5, 17422-17430.	0.9	11
44	Hole diffusion transport and photocurrent generation in the degenerate n-CdO/electrolyte junction. Solid State Communications, 1990, 76, 65-68.	0.9	10
45	Photocatalytic Deposition of Hydroxyapatite onto a Titanium Dioxide Nanotubular Layer with Fine Tuning of Layer Nanoarchitecture. Langmuir, 2016, 32, 4016-4021.	1.6	10
46	Aluminum Anodization in Deionized Water as Electrolyte. Journal of the Electrochemical Society, 2016, 163, C364-C368.	1.3	9
47	Simulation of polycrystalline bismuth films Seebeck coefficient based on experimental texture identification. Materials Chemistry and Physics, 2016, 177, 413-416.	2.0	8
48	Anodic Alumina Films Prepared by Powerful Pulsed Discharge Oxidation. Journal of Physical Chemistry C, 2011, 115, 18634-18639.	1.5	7
49	Effect of fluoride-mediated transformations on electrocatalytic performance of thermally treated TiO2 nanotubular layers. Journal of Fluorine Chemistry, 2019, 221, 34-41.	0.9	7
50	Optical and Photoelectrochemical Properties of Lead Zirconate Titanate Thin Films Obtained by the Sol-Gel Method. Journal of Applied Spectroscopy, 2014, 81, 866-872.	0.3	6
51	Titania Films Obtained by Powerful Pulsed Discharge Oxidation in Phosphoric Acid Electrolytes. Journal of the Electrochemical Society, 2014, 161, D73-D78.	1.3	6
52	Polycrystalline bismuth films: Correlation between grain structure and electron transport. Physica Status Solidi (B): Basic Research, 2015, 252, 2000-2005.	0.7	6
53	Synthesis and characterization of efficient TiO 2 mesoporous photocatalysts. Materials Today: Proceedings, 2017, 4, 11526-11533.	0.9	6
54	Photoelectrochemical behaviour of n-silicon photoanodes coated with chromium(III) oxide films and Cr2O3 containing composite layers. Solar Energy Materials and Solar Cells, 1989, 18, 357-364.	0.4	5

#	Article	IF	CITATIONS
55	Electrochemical formation of bismuth oxyhalide films in neutral halide solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 278, 227-247.	0.3	5
56	Cyclic voltammetry as a sensitive method for in situ probing of chemical transformations in quantum dots. Physical Chemistry Chemical Physics, 2016, 18, 10355-10361.	1.3	5
57	Photoelectrochemical determination of bandgap energy in surface layers formed on semiconductor electrodes. Electrochimica Acta, 1995, 40, 1761-1767.	2.6	4
58	Underpotential deposition of cadmium adatoms on Te and CdTe. Electrochimica Acta, 2006, 52, 996-1002.	2.6	4
59	Behavior of (La,Sr)CoO3- and La2NiO4-based ceramic anodes in alkaline media: compositional and microstructural factors. Journal of Solid State Electrochemistry, 2007, 12, 15-30.	1.2	4
60	Electrosynthesis of Ordered TiO ₂ ÂNanotubular Layers in Deep Eutectic Solvents and Their Properties. Journal of the Electrochemical Society, 2019, 166, H377-H386.	1.3	4
61	Nature of paramagnetic defects in black titanium dioxide nanotubes. Materials Chemistry and Physics, 2022, 278, 125703.	2.0	4
62	Photoelectrochemical processes on TiO2 electrodes sensitized by lead selenide nanoparticles. Theoretical and Experimental Chemistry, 2012, 48, 33-37.	0.2	3
63	Photoelectrochemical determination of minority-carrier diffusion length and energy band gap in heavily doped semiconductors—II. Interband optical transitions in degenerate nî—,CdO. Journal of Physics and Chemistry of Solids, 1994, 55, 447-451.	1.9	2
64	Study of semiconductor/electrolyte interface using the Fourier transformation of photovoltage response to periodic laser pulses. Surface Science, 2000, 454-456, 1046-1051.	0.8	2
65	Electroplating of Iron Films: Microstructural Effects of Alkaline Baths. Materials Science Forum, 2006, 514-516, 88-92.	0.3	1
66	Molecular scale organized poly(MDMO-p-phenylene vinylene)–heteropolyacid composites. Synthetic Metals, 2006, 156, 843-847.	2.1	1
67	Electrocatalysis of oxygen reduction reaction on gold nanoparticles modified titanium dioxide films with different morphology. Journal of the Belarusian State University Chemistry, 2020, , 63-75.	0.1	1
68	UV-assisted anchoring of gold nanoparticles into TiO2 nanotubes for oxygen electroreduction. Journal of Electroanalytical Chemistry, 2022, 904, 115844.	1.9	1
69	Electrocatalytic Behavior of Perovskite-Related Cobaltites and Nickelates in Alkaline Media. Materials Science Forum, 2006, 514-516, 1391-1395.	0.3	0
70	Hierarchical Materials: SERS Platforms of Plasmonic Hydrophobic Surfaces for Analyte Concentration: Hierarchically Assembled Gold Nanorods on Anodized Aluminum (Part. Part. Syst.) Tj ETQq0 0 0 r	gB I. ‡Over	lock 10 Tf 50
71	Encapsulation of Al and Ti-Al alloy 1-D nanorods into oxide matrix by powerful pulsed discharge method. Journal of Solid State Electrochemistry, 2018, 22, 3913-3920.	1.2	0

⁷² CHEMICALLY GROWN II-VI SEMICONDUCTOR QUANTUM DOTS FOR OPTOELECTRONIC AND PHOTONIC APPLICATIONS., 2001, , .

#	Article	IF	CITATIONS
73	ELECTROCHEMICAL STUDY OF PHOTOCHEMICALLY TREATED THIOL-CAPPED ZnSe(S) NANOCRYSTALS. , 2007, , .		0