Lisa Truong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8019558/publications.pdf

Version: 2024-02-01

94 3,611 31 papers citations h-index

57 g-index

98 all docs

98 docs citations 98 times ranked 5089 citing authors

#	Article	IF	CITATIONS
1	Sulfonamide functional head on short-chain perfluorinated substance drives developmental toxicity. IScience, 2022, 25, 103789.	1.9	20
2	Size- and Oxidation-Dependent Toxicity of Graphene Oxide Nanomaterials in Embryonic Zebrafish. Nanomaterials, 2022, 12, 1050.	1.9	3
3	Implementation of Zebrafish Ontologies for Toxicology Screening. Frontiers in Toxicology, 2022, 4, 817999.	1.6	4
4	Transcriptomic and Long-Term Behavioral Deficits Associated with Developmental 3.5 GHz Radiofrequency Radiation Exposures in Zebrafish. Environmental Science and Technology Letters, 2022, 9, 327-332.	3.9	6
5	Systematic developmental toxicity assessment of a structurally diverse library of PFAS in zebrafish. Journal of Hazardous Materials, 2022, 431, 128615.	6.5	26
6	Leveraging a High-Throughput Screening Method to Identify Mechanisms of Individual Susceptibility Differences in a Genetically Diverse Zebrafish Model. Frontiers in Toxicology, 2022, 4, 846221.	1.6	1
7	Developmental, Behavioral and Transcriptomic Changes in Zebrafish Embryos after Smoke Dye Exposure. Toxics, 2022, 10, 210.	1.6	2
8	Dietary Perfluorohexanoic Acid (PFHxA) Exposures in Juvenile Zebrafish Produce Subtle Behavioral Effects across Generations. Toxics, 2022, 10, 372.	1.6	6
9	Developmental toxicity in zebrafish (Danio rerio) exposed to uranium: A comparison with lead, cadmium, and iron. Environmental Pollution, 2021, 269, 116097.	3.7	19
10	Developmental Hazard of Environmentally Persistent Free Radicals and Protective Effect of TEMPOL in Zebrafish Model. Toxics, 2021, 9, 12.	1.6	6
11	Morphological and Behavioral Effects in Zebrafish Embryos after Exposure to Smoke Dyes. Toxics, 2021, 9, 9.	1.6	9
12	Uncovering Evidence for Endocrine-Disrupting Chemicals That Elicit Differential Susceptibility through Gene-Environment Interactions. Toxics, 2021, 9, 77.	1.6	3
13	Phenotypically Anchored mRNA and miRNA Expression Profiling in Zebrafish Reveals Flame Retardant Chemical Toxicity Networks. Frontiers in Cell and Developmental Biology, 2021, 9, 663032.	1.8	9
14	Behavior Effects of Structurally Diverse Per- and Polyfluoroalkyl Substances in Zebrafish. Chemical Research in Toxicology, 2021, 34, 1409-1416.	1.7	33
15	Concurrent Evaluation of Mortality and Behavioral Responses: A Fast and Efficient Testing Approach for High-Throughput Chemical Hazard Identification. Frontiers in Toxicology, 2021, 3, 670496.	1.6	3
16	Leveraging high-throughput screening data, deep neural networks, and conditional generative adversarial networks to advance predictive toxicology. PLoS Computational Biology, 2021, 17, e1009135.	1.5	23
17	Nitrate-induced improvements in exercise performance are coincident with exuberant changes in metabolic genes and the metabolome in zebrafish (Danio rerio) skeletal muscle. Journal of Applied Physiology, 2021, 131, 142-157.	1.2	2
18	Zinc oxide-induced changes to sunscreen ingredient efficacy and toxicity under UV irradiation. Photochemical and Photobiological Sciences, 2021, 20, 1273-1285.	1.6	18

#	Article	IF	CITATIONS
19	Developmental titanium dioxide nanoparticle exposure induces oxidative stress and neurobehavioral changes in zebrafish. Aquatic Toxicology, 2021, 240, 105990.	1.9	17
20	Assessing the hazard of E-Cigarette flavor mixtures using zebrafish. Food and Chemical Toxicology, 2020, 136, 110945.	1.8	15
21	The multi-dimensional embryonic zebrafish platform predicts flame retardant bioactivity. Reproductive Toxicology, 2020, 96, 359-369.	1.3	17
22	Systematic Assessment of Exposure Variations on Observed Bioactivity in Zebrafish Chemical Screening. Toxics, 2020, 8, 87.	1.6	11
23	Nitrate and Nitrite Treatment Affect Zebrafish Behavior and Brain Metabolomic Profile. Current Developments in Nutrition, 2020, 4, nzaa057_006.	0.1	O
24	Impacts of high dose 3.5 GHz cellphone radiofrequency on zebrafish embryonic development. PLoS ONE, 2020, 15, e0235869.	1.1	15
25	Rapid well-plate assays for motor and social behaviors in larval zebrafish. Behavioural Brain Research, 2020, 391, 112625.	1.2	24
26	Mutagenicity assessment downstream of oil and gas produced water discharges intended for agricultural beneficial reuse. Science of the Total Environment, 2020, 715, 136944.	3.9	33
27	Nitrate and nitrite exposure leads to mild anxiogenic-like behavior and alters brain metabolomic profile in zebrafish. PLoS ONE, 2020, 15, e0240070.	1.1	15
28	Comparative Analysis of Zebrafish and Planarian Model Systems for Developmental Neurotoxicity Screens Using an 87-Compound Library. Toxicological Sciences, 2019, 167, 15-25.	1.4	37
29	Profiling 58 compounds including cosmetic-relevant chemicals using ToxRefDB and ToxCast. Food and Chemical Toxicology, 2019, 132, 110718.	1.8	7
30	Glucocorticoid receptor-dependent induction of cripto-1 (one-eyed pinhead) inhibits zebrafish caudal fin regeneration. Toxicology Reports, 2019, 6, 529-537.	1.6	7
31	Combined Danio rerio embryo morbidity, mortality and photomotor response assay: A tool for developmental risk assessment from chronic cyanoHAB exposure. Science of the Total Environment, 2019, 697, 134210.	3.9	11
32	Treatment with Nitrate, but Not Nitrite, Lowers the Oxygen Cost of Exercise and Decreases Glycolytic Intermediates While Increasing Fatty Acid Metabolites in Exercised Zebrafish. Journal of Nutrition, 2019, 149, 2120-2132.	1.3	14
33	Coupling Genome-wide Transcriptomics and Developmental Toxicity Profiles in Zebrafish to Characterize Polycyclic Aromatic Hydrocarbon (PAH) Hazard. International Journal of Molecular Sciences, 2019, 20, 2570.	1.8	39
34	Determination of narcotic potency using a neurobehavioral assay with larval zebrafish. NeuroToxicology, 2019, 74, 67-73.	1.4	3
35	Formation of PAH Derivatives and Increased Developmental Toxicity during Steam Enhanced Extraction Remediation of Creosote Contaminated Superfund Soil. Environmental Science & Echnology, 2019, 53, 4460-4469.	4.6	35
36	Systematic determination of the relationship between nanoparticle core diameter and toxicity for a series of structurally analogous gold nanoparticles in zebrafish. Nanotoxicology, 2019, 13, 879-893.	1.6	20

#	Article	IF	Citations
37	Multivariate modeling of engineered nanomaterial features associated with developmental toxicity. NanoImpact, 2019, 16, 100185.	2.4	8
38	Time-dependent behavioral data from zebrafish reveals novel signatures of chemical toxicity using point of departure analysis. Computational Toxicology, 2019, 9, 50-60.	1.8	8
39	Developing and interpreting aqueous functional assays for comparative property-activity relationships of different nanoparticles. Science of the Total Environment, 2018, 628-629, 1609-1616.	3.9	6
40	Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish. Toxicology and Applied Pharmacology, 2018, 354, 115-125.	1.3	65
41	Population genetic diversity in zebrafish lines. Mammalian Genome, 2018, 29, 90-100.	1.0	34
42	Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. Archives of Toxicology, 2018, 92, 571-586.	1.9	120
43	Synergistic Toxicity Produced by Mixtures of Biocompatible Gold Nanoparticles and Widely Used Surfactants. ACS Nano, 2018, 12, 5312-5322.	7. 3	70
44	Trade-offs in ecosystem impacts from nanomaterial versus organic chemical ultraviolet filters in sunscreens. Water Research, 2018, 139, 281-290.	5.3	52
45	Predicting in vivo effect levels for repeat-dose systemic toxicity using chemical, biological, kinetic and study covariates. Archives of Toxicology, 2018, 92, 587-600.	1.9	11
46	Signaling Events Downstream of AHR Activation That Contribute to Toxic Responses: The Functional Role of an AHR-Dependent Long Noncoding RNA (<i>slincR</i>) Using the Zebrafish Model. Environmental Health Perspectives, 2018, 126, 117002.	2.8	28
47	Elucidating Gene-by-Environment Interactions Associated with Differential Susceptibility to Chemical Exposure. Environmental Health Perspectives, 2018, 126, 067010.	2.8	21
48	AHR2 required for normal behavioral responses and proper development of the skeletal and reproductive systems in zebrafish. PLoS ONE, 2018, 13, e0193484.	1.1	40
49	Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model. Journal of Nutritional Biochemistry, 2017, 43, 78-87.	1.9	27
50	Mechanistic Investigations Into the Developmental Toxicity of Nitrated and Heterocyclic PAHs. Toxicological Sciences, 2017, 157, 246-259.	1.4	39
51	Zebrafish embryo toxicity of 15 chlorinated, brominated, and iodinated disinfection by-products. Journal of Environmental Sciences, 2017, 58, 302-310.	3.2	65
52	Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo[a]pyrene in zebrafish. Toxicology and Applied Pharmacology, 2017, 329, 148-157.	1.3	101
53	Investigating the application of a nitroreductase-expressing transgenic zebrafish line for high-throughput toxicity testing. Toxicology Reports, 2017, 4, 202-210.	1.6	11
54	A data-driven weighting scheme for multivariate phenotypic endpoints recapitulates zebrafish developmental cascades. Toxicology and Applied Pharmacology, 2017, 314, 109-117.	1.3	10

#	Article	IF	CITATIONS
55	Developmental benzo[a]pyrene (B[a]P) exposure impacts larval behavior and impairs adult learning in zebrafish. Neurotoxicology and Teratology, 2017, 59, 27-34.	1.2	74
56	Formation of Developmentally Toxic Phenanthrene Metabolite Mixtures by <i>Mycobacterium</i> sp. ELW1. Environmental Science & Elw1. Environmental Elw1. Environmental Elw1. Environmental Elw1. Environmental Elw1. Elw1	4.6	31
57	A multidisciplinary investigation of the technical and environmental performances of TAML/peroxide elimination of Bisphenol A compounds from water. Green Chemistry, 2017, 19, 4234-4262.	4.6	46
58	Chronic vitamin E deficiency impairs cognitive function in adult zebrafish via dysregulation of brain lipids and energy metabolism. Free Radical Biology and Medicine, 2017, 112, 308-317.	1.3	45
59	Vitamin E deficiency during embryogenesis in zebrafish causes lasting metabolic and cognitive impairments despite refeeding adequate diets. Free Radical Biology and Medicine, 2017, 110, 250-260.	1.3	31
60	Residual weakly bound ligands influence biological compatibility of mixed ligand shell, thiol-stabilized gold nanoparticles. Environmental Science: Nano, 2017, 4, 1634-1646.	2.2	4
61	Combinatorial effects of zinc deficiency and arsenic exposure on zebrafish (Danio rerio) development. PLoS ONE, 2017, 12, e0183831.	1.1	31
62	Identification of a Raloxifene Analog That Promotes AhR-Mediated Apoptosis in Cancer Cells. Biology, 2017, 6, 41.	1.3	13
63	Evaluation of Embryotoxicity Using the Zebrafish Model. Methods in Molecular Biology, 2017, 1641, 325-333.	0.4	19
64	A New Statistical Approach to Characterize Chemical-Elicited Behavioral Effects in High-Throughput Studies Using Zebrafish. PLoS ONE, 2017, 12, e0169408.	1.1	23
65	Integrating Morphological and Behavioral Phenotypes in Developing Zebrafish., 2017,, 259-272.		2
66	Identification and Toxicological Evaluation of Unsubstituted PAHs and Novel PAH Derivatives in Pavement Sealcoat Products. Environmental Science and Technology Letters, 2016, 3, 234-242.	3.9	53
67	Assessment of the developmental and neurotoxicity of the mosquito control larvicide, pyriproxyfen, using embryonic zebrafish. Environmental Pollution, 2016, 218, 1089-1093.	3.7	48
68	Better, Faster, Cheaper: Getting the Most Out of High-Throughput Screening with Zebrafish. Methods in Molecular Biology, 2016, 1473, 89-98.	0.4	8
69	Optimizing multi-dimensional high throughput screening using zebrafish. Reproductive Toxicology, 2016, 65, 139-147.	1.3	47
70	Response to Correspondence on Identification and Toxicological Evaluation of Unsubstituted PAHs and Novel PAH Derivatives in Pavement Sealcoat Products. Environmental Science and Technology Letters, 2016, 3, 406-408.	3.9	2
71	Aggregate entropy scoring for quantifying activity across endpoints with irregular correlation structure. Reproductive Toxicology, 2016, 62, 92-99.	1.3	11
72	Lipidomics and H218O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos. Redox Biology, 2016, 8, 165-174.	3.9	25

#	Article	IF	Citations
73	High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Archives of Toxicology, 2016, 90, 1459-1470.	1.9	117
74	Identification and Toxicological Evaluation of Unsubstituted PAHs and Novel PAH Derivatives in Pavement Sealcoat Products. Environmental Science and Technology Letters, 2016, 3, 234-242.	3.9	9
75	Multidimensional In Vivo Hazard Assessment Using Zebrafish. Toxicological Sciences, 2014, 137, 212-233.	1.4	256
76	A rapid throughput approach identifies cognitive deficits in adult zebrafish from developmental exposure to polybrominated flame retardants. NeuroToxicology, 2014, 43, 134-142.	1.4	43
77	Investigating Alternatives to the fish earlyâ€life stage test: A strategy for discovering and annotating adverse outcome pathways for early fish development. Environmental Toxicology and Chemistry, 2014, 33, 158-169.	2.2	90
78	The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2014, 10, 22-29.	0.4	18
79	Zebrafish assays as developmental toxicity indicators in the green design of TAML oxidation catalysts. Green Chemistry, 2013, 15, 2339.	4.6	25
80	Sulfidation of Silver Nanoparticles: Natural Antidote to Their Toxicity. Environmental Science & Eamp; Technology, 2013, 47, 13440-13448.	4.6	364
81	Silver nanoparticle toxicity in the embryonic zebrafish is governed by particle dispersion and ionic environment. Nanotechnology, 2013, 24, 115101.	1.3	80
82	Comparative developmental toxicity of environmentally relevant oxygenated PAHs. Toxicology and Applied Pharmacology, 2013, 271, 266-275.	1.3	164
83	Surface functionalities of gold nanoparticles impact embryonic gene expression responses. Nanotoxicology, 2013, 7, 192-201.	1.6	64
84	Preparation of water soluble carbon nanotubes and assessment of their biological activity in embryonic zebrafish. International Journal of Biomedical Nanoscience and Nanotechnology, 2013, 3, 38.	0.1	18
85	Rapid In Vivo Assessment of the Nano/Bio Interface. , 2013, , .		2
86	Automated Zebrafish Chorion Removal and Single Embryo Placement: Optimizing Throughput of Zebrafish Developmental Toxicity Screens. Journal of the Association for Laboratory Automation, 2012, 17, 66-74.	2.8	151
87	Media ionic strength impacts embryonic responses to engineered nanoparticle exposure. Nanotoxicology, 2012, 6, 691-699.	1.6	52
88	Early life stage trimethyltin exposure induces ADP-ribosylation factor expression and perturbs the vascular system in zebrafish. Toxicology, 2012, 302, 129-139.	2.0	11
89	Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2012, 155, 269-274.	1.3	91
90	Predation by zooplankton on Batrachochytrium dendrobatidis: biological control of the deadly amphibian chytrid fungus?. Biodiversity and Conservation, 2011, 20, 3549-3553.	1.2	60

#	Article	IF	CITATIONS
91	Differential stability of lead sulfide nanoparticles influences biological responses in embryonic zebrafish. Archives of Toxicology, 2011, 85, 787-798.	1.9	58
92	Evaluation of Embryotoxicity Using the Zebrafish Model. Methods in Molecular Biology, 2011, 691, 271-279.	0.4	189
93	Optimizing in vivo Assessment of Nano/bio Interactions to Guide Safer Material Design. Materials Research Society Symposia Proceedings, 2011, 1317, 1.	0.1	1
94	Nitrate exposure reprograms hepatic amino acid and nutrient sensing pathways prior to exercise: A metabolomic and transcriptomic investigation in zebrafish (Danio rerio). Frontiers in Molecular Biosciences, 0, 9, .	1.6	1