
Trieu Mai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8019533/publications.pdf Version: 2024-02-01

Τριείι Μλι

#	Article	IF	CITATIONS
1	Energy-Storage Modeling: State-of-the-Art and Future Research Directions. IEEE Transactions on Power Systems, 2022, 37, 860-875.	4.6	37
2	The prospective impacts of 2019 state energy policies on the U.S. electricity system. Energy Policy, 2021, 149, 112013.	4.2	8
3	A systematic evaluation of wind's capacity credit in the Western United States. Wind Energy, 2021, 24, 1107-1121.	1.9	5
4	An evaluation of electricity system technology competitiveness metrics: The case for profitability. Electricity Journal, 2021, 34, 106931.	1.3	8
5	Land use and turbine technology influences on wind potential in the United States. Energy, 2021, 223, 120044.	4.5	45
6	Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system. Energy, 2021, 223, 119998.	4.5	34
7	The challenges of achieving a 100% renewable electricity system in the United States. Joule, 2021, 5, 1331-1352.	11.7	99
8	Exploring the cost implications of increased renewable energy for the U.S. power system. Electricity Journal, 2021, 34, 106957.	1.3	18
9	Quantifying the challenge of reaching a 100% renewable energy power system for the United States. Joule, 2021, 5, 1732-1748.	11.7	82
10	Modeling variable renewable energy and storage in the power sector. Energy Policy, 2021, 156, 112424.	4.2	26
11	A relative value framework: Why do different electricity system technologies have different economic value?. Electricity Journal, 2021, 34, 107007.	1.3	2
12	High electrification futures: Impacts to the U.S. bulk power system. Electricity Journal, 2020, 33, 106878.	1.3	9
13	Timescales of energy storage needed for reducing renewable energy curtailment. Renewable Energy, 2019, 130, 388-399.	4.3	127
14	Setting cost targets for zero-emission electricity generation technologies. Applied Energy, 2019, 250, 582-592.	5.1	15
15	How low can you go? The importance of quantifying minimum generation levels for renewable integration. Energy Policy, 2018, 115, 249-257.	4.2	32
16	The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system. Energy Economics, 2018, 76, 313-324.	5.6	56
17	Analyzing storage for wind integration in a transmission-constrained power system. Applied Energy, 2018, 228, 122-129.	5.1	33
18	An Electrified Future: Initial Scenarios and Future Research for U.S. Energy and Electricity Systems. IEEE Power and Energy Magazine, 2018, 16, 34-47.	1.6	25

Trieu Mai

#	Article	IF	CITATIONS
19	Assessing the costs and benefits of US renewable portfolio standards. Environmental Research Letters, 2017, 12, 094023.	2.2	44
20	Long-term implications of sustained wind power growth in the United States: Direct electric system impacts and costs. Applied Energy, 2016, 179, 832-846.	5.1	24
21	Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts. Applied Energy, 2016, 179, 146-158.	5.1	40
22	The environmental and public health benefits of achieving high penetrations of solar energy in the United States. Energy, 2016, 113, 472-486.	4.5	71
23	A retrospective analysis of benefits and impacts of U.S. renewable portfolio standards. Energy Policy, 2016, 96, 645-660.	4.2	122
24	Wind Vision: A New Era for Wind Power in the United States. Electricity Journal, 2015, 28, 120-132.	1.3	74
25	Considering the Role of Solar Generation under Rate-Based Targets in the EPA's Proposed Clean Power Plan. Electricity Journal, 2015, 28, 20-28.	1.3	3
26	Renewable Electricity Futures for the United States. IEEE Transactions on Sustainable Energy, 2014, 5, 372-378.	5.9	154
27	Meta-analysis of high penetration renewable energy scenarios. Renewable and Sustainable Energy Reviews, 2014, 29, 246-253.	8.2	113
28	Envisioning a renewable electricity future for the United States. Energy, 2014, 65, 374-386.	4.5	89
29	Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply. Applied Energy, 2014, 123, 368-377.	5.1	109
30	Natural gas scenarios in the U.S. power sector. Energy Economics, 2013, 40, 183-195.	5.6	50
31	Bright Future: Solar Power as a Major Contributor to the U.S. Grid. IEEE Power and Energy Magazine, 2013, 11, 22-32.	1.6	51
32	Accelerating the Global Transformation to 21st Century Power Systems. Electricity Journal, 2013, 26, 39-51.	1.3	15
33	Potential Reductions in Emissions and Petroleum Use in Transportation. Transportation Research Record, 2013, 2375, 37-44.	1.0	2
34	Equilibration and Universal Heat Conduction in Fermi-Pasta-Ulam Chains. Physical Review Letters, 2007, 98, 184301.	2.9	129