Dongdong Sun

List of Publications by Citations

Source: https://exaly.com/author-pdf/8019532/dongdong-sun-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25 363 9 18 g-index

28 560 5.8 3.26 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
25	Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E2960-E2969	11.5	153
24	Profiling and analysis of multiple constituents in Baizhu Shaoyao San before and after processing by stir-frying using UHPLC/Q-TOF-MS/MS coupled with multivariate statistical analysis. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2018 , 1083, 110-123	3.2	38
23	The enhanced permeability and retention effect based nanomedicine at the site of injury. <i>Nano Research</i> , 2020 , 13, 564-569	10	28
22	Hederin inhibits interleukin 6-induced epithelial-to-mesenchymal transition associated with disruption of JAK2/STAT3 signaling in colon cancer cells. <i>Biomedicine and Pharmacotherapy</i> , 2018 , 101, 107-114	7.5	25
21	Lobetyolin induces apoptosis of colon cancer cells by inhibiting glutamine metabolism. <i>Journal of Cellular and Molecular Medicine</i> , 2020 , 24, 3359-3369	5.6	17
20	Platelet-derived extracellular vesicles to target plaque inflammation for effective anti-atherosclerotic therapy. <i>Journal of Controlled Release</i> , 2021 , 329, 445-453	11.7	14
19	Isolation, structural determination and cytotoxic activity of two new ceramides from the root of Isatis indigotica. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 621-625		12
18	Protective Effect of 2-Hydroxymethyl Anthraquinone from Hedyotis diffusa Willd in Lipopolysaccharide-Induced Acute Lung Injury Mediated by TLR4-NF- B Pathway. <i>Inflammation</i> , 2018 , 41, 2136-2148	5.1	11
17	4Fhydroxywogonin inhibits colorectal cancer angiogenesis by disrupting PI3K/AKT signaling. <i>Chemico-Biological Interactions</i> , 2018 , 296, 26-33	5	10
16	EHederin Arrests Cell Cycle at G2/M Checkpoint and Promotes Mitochondrial Apoptosis by Blocking Nuclear Factor- B Signaling in Colon Cancer Cells. <i>BioMed Research International</i> , 2018 , 2018, 2548378	3	8
15	Enhanced ROS-Boosted Phototherapy against Pancreatic Cancer Nrf2-Mediated Stress-Defense Pathway Suppression and Ferroptosis Induction ACS Applied Materials & Cancer Nrf2-Mediated Stress-Defense Pathway Suppression and Ferroptosis Induction ACS Applied Materials & Cancer Nrf2-Mediated Stress-Defense Pathway Suppression and Ferroptosis Induction ACS Applied Materials & Cancer Nrf2-Mediated Stress-Defense Pathway Suppression and Ferroptosis Induction ACS Applied Materials & Cancer Nrf2-Mediated Stress-Defense Pathway Suppression and Ferroptosis Induction ACS Applied Materials & Cancer Nrf2-Mediated Stress-Defense Pathway Suppression and Ferroptosis Induction ACS Applied Materials & Cancer Nrf2-Mediated Stress-Defense Pathway Suppression and Ferroptosis Induction ACS Applied Materials & Cancer Nrf2-Mediated Stress-Defense Pathway Suppression and Ferroptosis Induction ACS Applied Materials & Cancer Nrf2-Mediated N	9.5	7
14	ONTD induces growth arrest and apoptosis of human hepatoma Bel-7402 cells though a peroxisome proliferator-activated receptor Edependent pathway. <i>Toxicology in Vitro</i> , 2017 , 45, 44-53	3.6	6
13	Identification of the absorbed components and metabolites of Xiao-Ai-Jie-Du decoction and their distribution in rats using ultra high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2020 , 179, 112984	3.5	6
12	Worenine reverses the Warburg effect and inhibits colon cancer cell growth by negatively regulating HIF-1 <i>Cellular and Molecular Biology Letters</i> , 2021 , 26, 19	8.1	6
11	Euphorbia factor L2 inhibits TGF-Induced cell growth and migration of hepatocellular carcinoma through AKT/STAT3. <i>Phytomedicine</i> , 2019 , 62, 152931	6.5	5
10	Low molecular weight heparin (nadroparin) improves placental permeability in rats with gestational diabetes mellitus via reduction of tight junction factors. <i>Molecular Medicine Reports</i> , 2020 , 21, 623-630	2.9	4
9	Targeting MK2 Is a Novel Approach to Interfere in Multiple Myeloma. <i>Frontiers in Oncology</i> , 2019 , 9, 722	2 5.3	3

LIST OF PUBLICATIONS

8	Advanced glycation end products increased placental vascular permeability of human BeWo cells via RAGE/NF-kB signaling pathway. <i>European Journal of Obstetrics, Gynecology and Reproductive Biology</i> , 2020 , 250, 93-100	2.4	2
7	Glycyrrhetinic Acid Protects Renal Tubular Cells against Oxidative Injury via Reciprocal Regulation of JNK-Connexin 43-Thioredoxin 1 Signaling. <i>Frontiers in Pharmacology</i> , 2021 , 12, 619567	5.6	2
6	Gold nanorods modified by endogenous protein with light-irradiation enhance bone repair via multiple osteogenic signal pathways <i>Biomaterials</i> , 2022 , 284, 121482	15.6	2
5	HIPK3 Inhibition by Exosomal hsa-miR-101-3p Is Related to Metabolic Reprogramming in Colorectal Cancer <i>Frontiers in Oncology</i> , 2021 , 11, 758336	5.3	1
4	Latent Sex Differences in CaMKII-nNOS Signaling That Underlie Antidepressant-Like Effects of Yueju-Ganmaidazao Decoction in the Hippocampus. <i>Frontiers in Behavioral Neuroscience</i> , 2021 , 15, 6402	5 ³ 8 ⁵	1
3	Effect of Aidi injection plus transarterial chemoembolization on primary hepatic carcinoma: a systematic review and Meta-analysis. <i>Journal of Traditional Chinese Medicine</i> , 2017 , 37, 567-587	1.1	1
2	Flavonoids from Scutellaria barbata D. Don exert antitumor activity in colorectal cancer through inhibited autophagy and promoted apoptosis via ATF4/sestrin2 pathway <i>Phytomedicine</i> , 2022 , 99, 1540	ე6₹	1
1	Identification of Significant Modules and Targets of Xian-Lian-Jie-Du Decoction Based on the Analysis of Transcriptomics, Proteomics and Single-Cell Transcriptomics in Colorectal Tumor <i>Journal of Inflammation Research</i> , 2022 , 15, 1483-1499	4.8	O