Roel P A Dullens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8019393/publications.pdf

Version: 2024-02-01

58 papers 1,885

304743 22 h-index 254184 43 g-index

58 all docs 58 docs citations

58 times ranked 2214 citing authors

#	Article	IF	CITATIONS
1	Layer-by-Layer Growth of Binary Colloidal Crystals. Science, 2002, 296, 106-109.	12.6	378
2	Two-Dimensional Melting of Colloidal Hard Spheres. Physical Review Letters, 2017, 118, 158001.	7.8	149
3	Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability. Nature Nanotechnology, 2018, 13, 478-482.	31.5	132
4	Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane <i>in vitro</i> models of the circulatory system. Biomicrofluidics, 2013, 7, 34102.	2.4	108
5	Grain-Boundary Fluctuations in Two-Dimensional Colloidal Crystals. Physical Review Letters, 2010, 105, 168301.	7.8	59
6	Communication: Radial distribution functions in a two-dimensional binary colloidal hard sphere system. Journal of Chemical Physics, 2014, 140, 161106.	3.0	59
7	Monodisperse Coreâ^'Shell Poly(methyl methacrylate) Latex Colloids. Langmuir, 2003, 19, 5963-5966.	3 . 5	57
8	Microscopic dynamics of synchronization in driven colloids. Nature Communications, 2015, 6, 7187.	12.8	57
9	Dynamic Broadening of the Crystal-Fluid Interface of Colloidal Hard Spheres. Physical Review Letters, 2006, 97, 228301.	7.8	50
10	Shaping colloidal bananas to reveal biaxial, splay-bend nematic, and smectic phases. Science, 2020, 369, 950-955.	12.6	50
11	Shear Thinning and Local Melting of Colloidal Crystals. Physical Review Letters, 2011, 107, 138301.	7.8	49
12	Direct measurement of the free energy by optical microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 529-531.	7.1	45
13	Effect of Hydrodynamic Interactions on Self-Diffusion of Quasi-Two-Dimensional Colloidal Hard Spheres. Physical Review Letters, 2015, 115, 268301.	7.8	43
14	Confinement Induced Splay-to-Bend Transition of Colloidal Rods. Physical Review Letters, 2012, 109, 108303.	7.8	40
15	Reentrant Surface Melting of Colloidal Hard Spheres. Physical Review Letters, 2004, 92, 195702.	7.8	37
16	Shape-Induced Frustration of Hexagonal Order in Polyhedral Colloids. Physical Review Letters, 2006, 96, 028304.	7.8	32
17	Core–Shell Particles for Simultaneous 3D Imaging and Optical Tweezing in Dense Colloidal Materials. Advanced Materials, 2016, 28, 8001-8006.	21.0	30
18	Devitrification of colloidal glasses in real space. Physical Review E, 2006, 73, 041401.	2.1	26

#	Article	IF	CITATIONS
19	Acousto-optically generated potential energy landscapes: Potential mapping using colloids under flow. Optics Express, 2012, 20, 28707.	3.4	25
20	Dislocation-controlled formation and kinetics of grain boundary loops in two-dimensional crystals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6922-6927.	7.1	25
21	Grain boundary pinning in doped hard sphere crystals. Soft Matter, 2009, 5, 2448.	2.7	24
22	Decoupled and simultaneous three-dimensional imaging and optical manipulation through a single objective. Optica, 2014, 1, 223.	9.3	23
23	Segregated Ice Growth in a Suspension of Colloidal Particles. Journal of Physical Chemistry B, 2016, 120, 3941-3949.	2.6	23
24	Colloidal particles driven across periodic optical-potential-energy landscapes. Physical Review E, 2016, 93, 012608.	2.1	22
25	Bulk dynamics of Brownian hard disks: Dynamical density functional theory versus experiments on two-dimensional colloidal hard spheres. Journal of Chemical Physics, 2018, 148, 104501.	3.0	22
26	Structure factors in a two-dimensional binary colloidal hard sphere system. Molecular Physics, 2018, 116, 3245-3257.	1.7	22
27	Colloidal hard spheres: cooking and looking. Soft Matter, 2006, 2, 805.	2.7	21
28	Synthesis of Colloidal SUâ€8 Polymer Rods Using Sonication. Advanced Materials, 2019, 31, e1807514.	21.0	19
29	Superconfinement tailors fluid flow at microscales. Nature Communications, 2015, 6, 7297.	12.8	16
30	Self-diffusion in two-dimensional binary colloidal hard-sphere fluids. Physical Review E, 2017, 95, 012614.	2.1	16
31	The effect of colloidal aggregates on fat crystal networks. Food and Function, 2017, 8, 352-359.	4.6	16
32	Anomalous Grain Growth in a Polycrystalline Monolayer of Colloidal Hard Spheres. Physical Review X, 2017, 7, .	8.9	16
33	Topological lifetimes of polydisperse colloidal hard spheres at a wall. Physical Review E, 2005, 71, 011405.	2.1	14
34	Emerging structural disorder in a suspension of uniformly dimpled colloidal particles. Soft Matter, 2013, 9, 9361.	2.7	14
35	Equilibrium Grain Boundary Segregation and Clustering of Impurities in Colloidal Polycrystalline Monolayers. Langmuir, 2016, 32, 12716-12724.	3.5	14
36	Deterministic aggregation kinetics of superparamagnetic colloidal particles. Journal of Chemical Physics, 2015, 143, 214903.	3.0	13

3

#	Article	IF	CITATIONS
37	Dynamic heterogeneities and non-Gaussian behavior in two-dimensional randomly confined colloidal fluids. Physical Review E, 2017, 95, 032602.	2.1	13
38	Colloidal Organosilica Spheres for Three-Dimensional Confocal Microscopy. Langmuir, 2019, 35, 7962-7969.	3.5	12
39	Towards Glasses with Permanent Stability. Physical Review Letters, 2021, 127, 215501.	7.8	11
40	Dynamic mode locking in a driven colloidal system: experiments and theory. New Journal of Physics, 2017, 19, 013010.	2.9	10
41	Generalized network theory of physical two-dimensional systems. Physical Review E, 2020, 101, 042309.	2.1	10
42	Directed self-assembly into low-density colloidal liquid crystal phases. Physical Review Materials, 2018, 2, .	2.4	10
43	Thermal Analog of Gimbal Lock in a Colloidal Ferromagnetic Janus Rod. Physical Review Letters, 2015, 115, 248301.	7.8	9
44	Frustrated crystallisation and melting in two-dimensional pentagonal confinement. Soft Matter, 2013, 9, 10586.	2.7	7
45	Exploring concentration, surface area and surface chemistry effects of colloidal aggregates on fat crystal networks. RSC Advances, 2017, 7, 28780-28787.	3.6	6
46	Bond-orientational order and Frank's constant in two-dimensional colloidal hard spheres. Journal of Physics Condensed Matter, 2018, 30, 104003.	1.8	6
47	Capillary nematisation of colloidal rods in confinement. Molecular Physics, 2018, 116, 2864-2871.	1.7	6
48	Transport of a colloidal particle driven across a temporally oscillating optical potential energy landscape. New Journal of Physics, 2019, 21, 083027.	2.9	6
49	Colloidal rods in optical potential energy landscapes. Journal Physics D: Applied Physics, 2019, 52, 024002.	2.8	6
50	Particle-Level Visualization of Hydrodynamic and Frictional Couplings in Dense Suspensions of Spherical Colloids. Physical Review X, 2021, 11 , .	8.9	6
51	Communication: Contact values of pair distribution functions in colloidal hard disks by test-particle insertion. Journal of Chemical Physics, 2018, 148, 241102.	3.0	4
52	Synthesis of Rough Colloidal SU-8 Rods and Bananas via Nanoprecipitation. Langmuir, 2021, 37, 2900-2906.	3.5	4
53	Hierarchical self-assembly of polydisperse colloidal bananas into a two-dimensional vortex phase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	4
54	Long-time self-diffusion in quasi-two-dimensional colloidal fluids of paramagnetic particles. Physical Review E, 2020, 101, 042609.	2.1	2

#	Article	IF	CITATIONS
55	Mechanical properties of colloidal crystals at fluid interfaces. JPhys Materials, 2021, 4, 025001.	4.2	2
56	Stabilisation of hollow colloidal TiO2 particles by partial coating with evenly distributed lobes. Soft Matter, 2021, 17, 1480-1486.	2.7	2
57	Grain boundary characterization from particle coordinates. Physical Review Materials, 2021, 5, .	2.4	2
58	Shrinkage mechanisms of grain boundary loops in two-dimensional colloidal crystals. European Physical Journal B, 2019, 92, 1.	1.5	1