Deepjyoti K Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8019247/publications.pdf

Version: 2024-02-01

		687220	1125617	
13	724	13	13	
papers	citations	h-index	g-index	
1.0	10	1.0	1.660	
13	13	13	1668	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Potential Role of Gut Microbiota in Induction and Regulation of Innate Immune Memory. Frontiers in Immunology, 2019, 10, 2441.	2.2	136
2	Alteration in the Gut Microbiota Provokes Susceptibility to Tuberculosis. Frontiers in Immunology, 2016, 7, 529.	2.2	122
3	TLR-3 Stimulation Skews M2 Macrophages to M1 Through IFN- $\hat{l}\pm\hat{l}^2$ Signaling and Restricts Tumor Progression. Frontiers in Immunology, 2018, 9, 1650.	2.2	110
4	Gut Microbiota Regulates Mincle Mediated Activation of Lung Dendritic Cells to Protect Against Mycobacterium tuberculosis. Frontiers in Immunology, 2019, 10, 1142.	2.2	70
5	Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of <i>Mycobacterium tuberculosis</i> . Autophagy, 2020, 16, 1021-1043.	4.3	60
6	Ricinus communis L. fruit extract inhibits migration/invasion, induces apoptosis in breast cancer cells and arrests tumor progression in vivo. Scientific Reports, 2019, 9, 14493.	1.6	48
7	Bolstering Immunity through Pattern Recognition Receptors: A Unique Approach to Control Tuberculosis. Frontiers in Immunology, 2017, 8, 906.	2.2	35
8	Reinforcing the Functionality of Mononuclear Phagocyte System to Control Tuberculosis. Frontiers in Immunology, 2018, 9, 193.	2.2	35
9	Infergen Stimulated Macrophages Restrict Mycobacterium tuberculosis Growth by Autophagy and Release of Nitric Oxide. Scientific Reports, 2016, 6, 39492.	1.6	28
10	Stimulation through CD40 and TLR-4 Is an Effective Host Directed Therapy against Mycobacterium tuberculosis. Frontiers in Immunology, 2016, 7, 386.	2.2	23
11	Gut Dysbiosis Thwarts the Efficacy of Vaccine Against Mycobacterium tuberculosis. Frontiers in Immunology, 2020, 11, 726.	2.2	21
12	Curdlan Limits Mycobacterium tuberculosis Survival Through STAT-1 Regulated Nitric Oxide Production. Frontiers in Microbiology, 2019, 10, 1173.	1.5	19
13	Intestinal microbiota disruption limits the isoniazid mediated clearance of <i>Mycobacterium tuberculosis</i> i> in mice. European Journal of Immunology, 2020, 50, 1976-1987.	1.6	17