## **Oliver Jacob Gurney-Champion**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8019188/publications.pdf

Version: 2024-02-01



Oliver Jacob

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator. Radiotherapy and Oncology, 2019, 133, 156-162.                                                                                           | 0.6 | 80        |
| 2  | Deep learning how to fit an intravoxel incoherent motion model to diffusionâ€weighted MRI. Magnetic<br>Resonance in Medicine, 2020, 83, 312-321.                                                                            | 3.0 | 74        |
| 3  | Quantitative imaging for radiotherapy purposes. Radiotherapy and Oncology, 2020, 146, 66-75.                                                                                                                                | 0.6 | 71        |
| 4  | Visibility and artifacts of gold fiducial markers used for image guided radiation therapy of pancreatic cancer on MRI. Medical Physics, 2015, 42, 2638-2647.                                                                | 3.0 | 44        |
| 5  | Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients. PLoS ONE, 2018, 13, e0194590.                             | 2.5 | 44        |
| 6  | Improved unsupervised physicsâ€informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients. Magnetic Resonance in Medicine, 2021, 86, 2250-2265.                          | 3.0 | 41        |
| 7  | Minimizing the Acquisition Time for Intravoxel Incoherent Motion Magnetic Resonance Imaging Acquisitions in the Liver and Pancreas. Investigative Radiology, 2016, 51, 211-220.                                             | 6.2 | 37        |
| 8  | Abdominal organ motion during inhalation and exhalation breath-holds: pancreatic motion at different lung volumes compared. Radiotherapy and Oncology, 2016, 121, 268-275.                                                  | 0.6 | 37        |
| 9  | Crossâ€modality deep learning: Contouring of MRI data from annotated CT data only. Medical Physics,<br>2021, 48, 1673-1684.                                                                                                 | 3.0 | 30        |
| 10 | A tri-exponential model for intravoxel incoherent motion analysis of the human kidney: In silico and<br>during pharmacological renal perfusion modulation. European Journal of Radiology, 2017, 91, 168-174.                | 2.6 | 28        |
| 11 | MRI-based Assessment of 3D Intrafractional Motion of Head and Neck Cancer for RadiationÂTherapy.<br>International Journal of Radiation Oncology Biology Physics, 2018, 100, 306-316.                                        | 0.8 | 28        |
| 12 | Addition of MRI for CT-based pancreatic tumor delineation: a feasibility study. Acta Oncológica, 2017, 56, 923-930.                                                                                                         | 1.8 | 23        |
| 13 | Pathological validation and prognostic potential of quantitative MRI in the characterization of pancreas cancer: preliminary experience. Molecular Oncology, 2020, 14, 2176-2189.                                           | 4.6 | 23        |
| 14 | Principal component analysis for fast and model-free denoising of multi b-value diffusion-weighted<br>MR images. Physics in Medicine and Biology, 2019, 64, 105015.                                                         | 3.0 | 22        |
| 15 | Evaluation of Six Diffusion-weighted MRI Models for Assessing Effects of Neoadjuvant<br>Chemoradiation in Pancreatic Cancer Patients. International Journal of Radiation Oncology Biology<br>Physics, 2018, 102, 1052-1062. | 0.8 | 20        |
| 16 | Repeatability of IVIM biomarkers from diffusionâ€weighted MRI in head and neck: Bayesian probability<br>versus neural network. Magnetic Resonance in Medicine, 2021, 85, 3394-3402.                                         | 3.0 | 19        |
| 17 | Reduced inter-observer and intra-observer delineation variation in esophageal cancer radiotherapy by<br>use of fiducial markers. Acta Oncológica, 2019, 58, 943-950.                                                        | 1.8 | 18        |
| 18 | Rapid 4D-MRI reconstruction using a deep radial convolutional neural network: Dracula.<br>Radiotherapy and Oncology, 2021, 159, 209-217.                                                                                    | 0.6 | 18        |

OLIVER JACOB

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Considerable interobserver variation in delineation of pancreatic cancer on 3DCT and 4DCT: a multi-institutional study. Radiation Oncology, 2017, 12, 58.                                                                                                            | 2.7  | 17        |
| 20 | Deep learning DCE-MRI parameter estimation: Application in pancreatic cancer. Medical Image Analysis, 2022, 80, 102512.                                                                                                                                              | 11.6 | 17        |
| 21 | Repeatability and correlations of dynamic contrast enhanced and T2* MRI in patients with advanced pancreatic ductal adenocarcinoma. Magnetic Resonance Imaging, 2018, 50, 1-9.                                                                                       | 1.8  | 16        |
| 22 | Super-resolution T2-weighted 4D MRI for image guided radiotherapy. Radiotherapy and Oncology, 2018, 129, 486-493.                                                                                                                                                    | 0.6  | 16        |
| 23 | Large expert-curated database for benchmarking document similarity detection in biomedical<br>literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .                                                                           | 3.0  | 15        |
| 24 | Digital tomosynthesis for verifying spine position during radiotherapy: a phantom study. Physics in<br>Medicine and Biology, 2013, 58, 5717-5733.                                                                                                                    | 3.0  | 12        |
| 25 | Sub-millimeter spine position monitoring for stereotactic body radiotherapy using offline digital tomosynthesis. Radiotherapy and Oncology, 2015, 115, 223-228.                                                                                                      | 0.6  | 12        |
| 26 | Optimal acquisition scheme for flowâ€compensated intravoxel incoherent motion diffusionâ€weighted<br>imaging in the abdomen: An accurate and precise clinically feasible protocol. Magnetic Resonance in<br>Medicine, 2020, 83, 1003-1015.                           | 3.0  | 11        |
| 27 | A convolutional neural network for contouring metastatic lymph nodes on diffusion-weighted magnetic resonance images for assessment of radiotherapy response. Physics and Imaging in Radiation Oncology, 2020, 15, 1-7.                                              | 2.9  | 11        |
| 28 | Quantification of image distortions on the Utrecht interstitial CT/MR brachytherapy applicator at 3T<br>MRI. Brachytherapy, 2016, 15, 118-126.                                                                                                                       | 0.5  | 8         |
| 29 | Quantitative assessment of biliary stent artifacts on MR images: Potential implications for target delineation in radiotherapy. Medical Physics, 2016, 43, 5603-5615.                                                                                                | 3.0  | 7         |
| 30 | Phase I/II Study of LDE225 in Combination with Gemcitabine and Nab-Paclitaxel in Patients with Metastatic Pancreatic Cancer. Cancers, 2021, 13, 4869.                                                                                                                | 3.7  | 7         |
| 31 | Revisiting the Potential of Alternating Repetition Time Balanced Steady-State Free Precession Imaging of the Abdomen at 3 T. Investigative Radiology, 2016, 51, 560-568.                                                                                             | 6.2  | 4         |
| 32 | Image Distortions on a Plastic Interstitial Computed Tomography/Magnetic Resonance Brachytherapy<br>Applicator at 3ÂTesla Magnetic Resonance Imaging and Their Dosimetric Impact. International Journal of<br>Radiation Oncology Biology Physics, 2017, 99, 710-718. | 0.8  | 4         |
| 33 | Sympathetic activation by lower body negative pressure decreases kidney perfusion without inducing hypoxia in healthy humans. Clinical Autonomic Research, 2020, 30, 149-156.                                                                                        | 2.5  | 4         |
| 34 | Digital Tomosynthesis Performance for Spine Tracking. International Journal of Radiation Oncology<br>Biology Physics, 2012, 84, S203-S204.                                                                                                                           | 0.8  | 2         |
| 35 | PO-0881: 4DMRI for RT planning; novel precise amplitude binning in the presence of irregular breathing. Radiotherapy and Oncology, 2017, 123, S482-S483.                                                                                                             | 0.6  | 2         |
| 36 | Dynamic MRI of swallowing: real-time volumetric imaging at 12 frames per second at 3ÂT. Magnetic<br>Resonance Materials in Physics, Biology, and Medicine, 2022, 35, 411-419.                                                                                        | 2.0  | 2         |

OLIVER JACOB

| #  | ARTICLE                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | SP224TRIâ^ZEXPONENTIAL APPROACH FOR INTRAVOXEL INCOHERENT MOTION ANALYSISOF MULTI Bâ^VALUE<br>DIFFUSION WHEIGTED MRI DATA FOLLOWS GFR CHANGES IN HEALTHY HUMANS. Nephrology Dialysis<br>Transplantation, 2016, 31, i161-i161. | 0.7 | 0         |
| 38 | PO-0710: Large interobserver variation of delineated target volumes of pancreatic cancer in the Netherlands. Radiotherapy and Oncology, 2016, 119, S331-S332.                                                                 | 0.6 | 0         |
| 39 | In Vivo Quantification of Image Distortions on The Utrecht Interstitial CT/MR Brachytherapy<br>Applicator at 3T MRI. Brachytherapy, 2016, 15, S152.                                                                           | 0.5 | 0         |
| 40 | SUâ€Eâ€Jâ€216: A Sequence Independent Approach for Quantification of MR Image Deformations From Brachytherapy Applicators. Medical Physics, 2015, 42, 3315-3315.                                                              | 3.0 | 0         |